Specular laser reflectance (He-Ne laser) has been used to monitor in-situ and in real time the growth rate and the index of refraction of oxide films during chemical vapor deposition. This technique has been implemented on an inverted vertical stagnation-flow reactor equipped with a solid-source delivery system. Yttria deposited on silicon has been chosen as a starting material to characterize the reactor and the precursor delivery system capabilities. The experimental reflectance curves have been fitted to a simple three-layer (gas/film/substrate) model allowing the determination of the growth rate and of the refractive index. The growth rate has been studied as a function of various key processing parameters: the source feeding rate, the powder packing density, the oxygen partial pressure and the total pressure. The change in reflectivity has also been recorded during pulsed-delivery growth. Nanometer-scale resolution is obtained which demonstrates that this method can be extended to the study of multilayer oxide structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.