2-D GC is a logical and cost effective extension to 1-D GC for improving the separation resolution, selectivity, and peak capacity of an analytical system. The advent of electronic pressure control systems that are accurate to the third decimal place, combined with recently innovated chromatographic devices such as capillary flow technology, has eliminated many deficiencies encountered in current conventional 2-D GC by making the technique reliable and simple to implement in both production and research analytical facilities. Low thermal mass GC (LTM-GC) was successfully integrated with capillary flow technology to further enhance overall 2-D GC chromatographic system performance by providing not only faster throughput via rapid heating and cooling, but independent temperature control for each dimension to maximize separation power. As an example, despite the enhanced peak capacity obtained from conventional 2-D GC, alkyl naphthalene isomers such as 2,3-dimethyl and 1,4-dimethyl naphthalene coeluted. These two critical compounds were well resolved (R = 5.2) using 2-D GC with LTM-GC with a similar analytical time. This paper demonstrates the benefits of combining capillary flow technology with LTM-GC to provide major enhancements to conventional 2-D GC. The synergy of these techniques is highlighted with practical industrial applications.
By employing multi-dimension gas chromatography with capillary flow technology in combination with highly selective capillary columns and a pressurized liquid injection system, light oxygenated compounds such as methanol, ethanol, n-propanol, 2-propanol, and n-butanol in the presence of either light hydrocarbon, heavy hydrocarbon, or aromatic matrices can be measured accurately with minimal possibility of a false positive. Using this technique, a detection limit of at least 0.20 ppm (w/w) with a linear correlation coefficient greater than 0.9993 over a range from 0.5 ppm to 600 ppm (w/w) and a relative standard deviation of greater than 2.7% are achieved for the solutes tested. The technique can also be effective for the measurement of other classes of oxygenated compounds such as ethers, aldehydes, and ketones. Another added benefit for the implementation of capillary flow technology is the capability to conduct column back-flushing, where heavier, undesired solutes in a sample can be back-flushed from the chromatographic system to improve system cleanliness and sample throughput.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.