In this paper we present the first comprehensive statistical study of EUV coronal jets observed with the SECCHI (Sun Earth Connection Coronal and Heliospheric Investigation) imaging suites of the two STEREO spacecraft. A catalogue of 79 polar jets is presented, identified from simultaneous EUV and white-light coronagraph observations, taken during the time period March 2007 to April 2008, when solar activity was at a minimum. The twin spacecraft angular separation increased during this time interval from 2 to 48 degrees. The appearances of the coronal jets were always correlated with underlying small-scale chromospheric bright points. A basic characterization of the morphology and identification of the presence of helical structure were established with respect to recently proposed models for their origin and temporal evolution. Though each jet appeared morphologically similar in the coronagraph field of view, in the sense of a narrow collimated outward flow of matter, at the source region in the low corona the jet showed different characteristics, which may correspond to different magnetic structures. A classification of the events with respect to previous jet studies shows that amongst the 79 events there were 37 Eiffel tower-type jet STEREO events, commonly interpreted as a small-scale (∼35 arc sec) magnetic bipole reconnecting with the ambient unipolar open coronal magnetic fields at its loop tops, and 12 lambda-type jet events commonly interpreted as reconnection with the ambient field happening at the bipole footpoints. Five events were termed micro-CME-type jet events because they resembled the classical coronal mass ejections (CMEs) but on much smaller scales. The remaining 25 cases could not be uniquely classified. Thirty-one of the total number of events exhibited a helical magnetic field structure, indicative for a torsional motion of the jet around its axis of propagation. A few jets are also found in equatorial coronal holes. In this study we present sample events for each of the jet types using both, STEREO A and STEREO B, perspectives. The typical lifetimes in the SECCHI/EUVI (Extreme UltraViolet Imager) field of view between 1.0 to 1.7 R and in SECCHI/COR1 field of view between 1.4 to 4 R are obtained, and the derived speeds are roughly estimated. In summary, the observations support the assumption of continuous small-scale reconnection as an intrinsic feature of the solar corona, with its role for the heating of the corona, particle acceleration, structuring and acceleration of the solar wind remaining to be explored in more detail in further studies.
Magnetic turbulence is found in most space plasmas, including the Earth's magnetosphere, and the interaction region between the magnetosphere and the solar wind. Recent spacecraft observations of magnetic turbulence in the ion foreshock, in the magnetosheath, in the polar cusp regions, in the magnetotail, and in the high latitude ionosphere are reviewed. It is found that: 1. A large share of magnetic turbulence in the geospace environment is generated locally, as due for instance to the reflected ion beams in the ion foreshock, to temperature anisotropy in the magnetosheath and the polar cusp regions, to velocity shear in the magnetosheath and magnetotail, and to magnetic reconnection at the magnetopause and in the magnetotail. 2. Spectral indices close to the Kolmogorov value can be recovered for low frequency turbulence when long enough intervals at relatively constant flow speed are analyzed in the magnetotail, or when fluctuations in the magnetosheath are G. Zimbardo et al. considered far downstream from the bow shock. 3. For high frequency turbulence, a spectral index α 2.3 or larger is observed in most geospace regions, in agreement with what is observed in the solar wind. 4. More studies are needed to gain an understanding of turbulence dissipation in the geospace environment, also keeping in mind that the strong temperature anisotropies which are observed show that wave particle interactions can be a source of wave emission rather than of turbulence dissipation. 5. Several spacecraft observations show the existence of vortices in the magnetosheath, on the magnetopause, in the magnetotail, and in the ionosphere, so that they may have a primary role in the turbulent injection and evolution. The influence of such a turbulence on the plasma transport, dynamics, and energization will be described, also using the results of numerical simulations.
We studied a magnetic turbulence axisymmetric around the unperturbed magnetic field for cases having different ratios l( ||)/l( perpendicular). We find, in addition to the fact that a higher fluctuation level deltaB/B(0) makes the system more stochastic, that by increasing the ratio l( ||)/l( perpendicular) at fixed deltaB/B(0), the stochasticity increases. It appears that the different transport regimes can be organized in terms of the Kubo number R=(deltaB/B(0))(l( ||)/l( perpendicular)). The simulation results are compared with the two analytical limits, that is the percolative limit and the quasilinear limit. When R<<1 weak chaos, closed magnetic surfaces, and anomalous transport regimes are found. When R approximately 1 the diffusion regime is Gaussian, and the quasilinear scaling of the diffusion coefficient D( perpendicular) approximately (deltaB/B(0))(2) is recovered. Finally, for R>>1 the percolation scaling of the diffusion coefficient D( perpendicular) approximately (deltaB/B(0))(0.7) is obtained.
Abstract. The ion dynamics in the distant Earth's magnetotail is studied in the case that a cross tail electric field E0 and reconnection-driven magnetic turbulence are present in the neutral sheet. The magnetic turbulence observed by the Geotail spacecraft is modeled numerically by a power law magnetic fluctuation spectrum. The magnetic fluctuations have the tearing mode parity with respect to the neutral sheet and are superimposed on a modified Harris sheet. A test particle simulation is performed for the ions, and the particle density, current density, bulk velocity, temperature, pressure, and heat flux are obtained for every point in the distant tail and as a function of the magnetic fluctuation level, 5B/Bo. It appears that the magnetic turbulence is very effective in maintaining the stationary structure of the current sheet and in changing the ion acceleration due to the electric field to thermal motion. Also, magnetic turbulence can inflate the current carrying region up to a thick current sheet, in contrast with the often assumed thin current sheet.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.