Sodium-dependent vitamin C transporters (SVCTs) is known to transport the reduced form of ascorbic acid into the cell, whereas the oxidized form of vitamin C (VC) is moved through a facilitative sugar transporter, such as glucose transporter (GLUT). With regard to the distribution of SVCT1 and -2 within the various organs, they were reported to be expressed in different types of cells. Especially in the central nervous system, only SVCT2 mRNA was expressed mainly in neurons and some types of neuroglial cells. However, data on the expression of SVCT proteins in the brain are scant. Therefore, we tried to develop comprehensive data on the distribution of SVCT proteins in adult rat brain by using immunohistochemical techniques for the first time. In our study, SVCT2 immunoreactivities (IRs) were intensely localized in the neurons of cerebral cortex, hippocampus, and Purkinje cells of cerebellum, and much weaker SVCT2 IRs were found in the other brain regions. Judging from double-immunohistochemical data, most of the cells expressing SVCT2 IRs were likely to be neurons or microglia, even though the cells in choroids plexus or ependymal cells around the ventricles also exhibited SVCT2 IRs. Complete mapping of the distribution of SVCT2 IRs was available by using a semiquantitative method. The subcellular localization of SVCT proteins is necessary for understanding the exact role of the protein, so the current overall mapping of SVCT IRs in the rat brain could be the basis for further studies on related subjects.
It is well known that UVB (290-320 nm) induces inflammation in skin by the transcription and release of cytokines and chemokines from skin keratinocytes. In addition, it is considered that intracellular reactive oxygen species (ROS) plays an important role in UVB-induced inflammatory response in the skin. Therefore, we investigated the effect of vitamin C, a potent antioxidant, on the regulation of UVB-induced skin inflammation via the modulation of chemokines production. Vitamin C uptake into keratinocytes is increased by UVB irradiation in a time- and dose-dependent manner through the translocation of sodium-dependent vitamin C transporter-1 (SVCT-1), a vitamin C-specific transporter, from the cytosol to the membrane. To evaluate the effect of vitamin C on the chemokine mRNA expression, we performed RNase protection assay. As a result, there was a remarkable change in chemokine mRNA expression, especially IL-8 and monocyte chemoattractant protein (MCP)-1 expression. In addition, increased IL-8 and MCP-1 mRNA expressions were suppressed by vitamin C treatment. We also confirmed the results of protein levels measured by ELISA. Taken together, vitamin C uptake is increased in UVB-irradiated keratinocytes through the translocation of SVCT-1 and regulates inflammatory response in the skin via the downregulation of IL-8 and MCP-1 production.
Recently, two L-ascorbic acid transporters were identified; sodium-dependent vitamin C transporter (SVCT) 1 and SVCT2. The previous study suggested that SVCT protein might be present on the apical membrane in the straight segment (S3) of proximal tubule. In the present study, SVCT1 immunoreactivity (IR) was observed in the brush border of proximal straight tubules in the medullary ray of renal cortex and the outer stripe of outer medulla, while SVCT2 IR was not localized in any region of the kidney. Since the mechanism of VC reabsorption in the kidney has not been fully elucidated up to the present time, it is meaningful to demonstrate the exact cellular distribution of SVCT protein in the kidney.
Although the megamitochondria (MM) were localized in various pathological conditions, normal retina of some mammalian species was reported to include MM for various physiological roles. However, it was not clearly confirmed whether the MM is present in the retina of lower vertebrate as well. In this study, we tried to show the presence of the MM in the zebrafish retina using electron microscopic technique. In all the photoreceptors including rods, cones and double cones of the zebrafish retina, MM were observed in the ellipsoid of inner segment. In the photoreceptor epllipsoid of the zebrafish retina, the mitochondria located in the central portion of the ellipsoid had a highly electron-dense matrix, which were accompanied by the mitochondria with electron-lucent matrix in the apical portion of the ellipsoid. The presence of MM was more clearly discernable in the rods, which were localized under the double cones. This finding is somewhat different from those observed in the previous studies because MM were localized in the inner segment of cones, but were not in those of rods in the case of mammalian retina. Although the exact physiological meaning for the presence of MM in some vertebrate species should be further studied, the present study could show that the MM in the ellipsoid of the retinal photoreceptors was not only restricted in some mammalian species.
As vitamin C (L-ascorbic acid, VC) is known to be essential for many enzymatic reactions, the study on the transport mechanism of VC through cytoplasmic membrane is crucial to understanding physiological role of VC in cells and the respiratory system. In this regard, the study on the newly identified sodium-dependent VC transporters (SVCTs), SVCT1 and SVCT2, is required in organs that contain high concentration of VC. We have shown the distribution of SVCT proteins in the respiratory system, which has been reported to be one of the organs with a high concentration of VC, using immunohistochemical techniques. In the present study, intense SVCT immunoreactivities (IRs) were mainly localized in the respiratory system epithelial cells. In the trachea, both SVCT1 and 2 were localized in the psuedostratified ciliated columnar epithelium. In the terminal bronchiole, SVCT1 and 2 IRs were mainly observed in the apical portion of the simple columnar epithelium. In addition, SVCT IRs was localized within the cell membrane of some alveolar cells, even though we could not identify the exact cell types. These results provide the first evidence that intense SVCT1 and 2 IRs were found in the apical portion of the respiratory epithelial cells, suggesting that SVCT proteins in the apical portion could transport the reduced form of VC included in the airway surface liquid into the respiratory epithelial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.