G protein-coupled receptors (GPCRs) are in the spotlight as drug targets due to the fact that multiple research results have verified the correlation between the activation of GPCRs and disease indications. This is because the GPCRs are present across the cell membranes, which interact with either extracellular ligands or other types of compartments and simultaneously mediate intracellular signaling. Despite the importance of the GPCRs as drug targets, they are too difficult to express in soluble forms. Currently, the difficulty of preparing functional GPCRs and the lack of efficient antibody screening methods are the most challenging steps in the discovery of antibodies targeting GPCRs. In this study, we developed a powerful platform that facilitates isolating GPCRspecific antibodies by obviating difficulties in GPCR preparation. The strategies include (i) conjugation of the P9 peptide, an envelope protein of Pseudomonas phi6, to the N-terminus of GPCRs to improve the expression level of the GPCRs in Escherichia coli, (ii) stabilization of the GPCRs in their active forms with amphiphilic poly-γ-glutamate (APG) to shield the seven hydrophobic transmembrane domains, and (iii) further limiting the size of the APG complex to improve the chance to isolate antibodies targeting the proteins-of-interest. Capitalizing on the above strategies, we could prepare GPCR proteins in their active forms as facile as other general-soluble antigen proteins. Furthermore, this protocol was validated to be successful in discovering three individual GPCR-specific antibodies targeting glucagon-like peptide-1 receptor, C-X-C chemokine receptor type 4, and prostaglandin E2 receptor 4 in this study. K E Y W O R D S amphiphilic poly-γ-glutamate, antibody discovery, G protein-coupled receptors, phage display, purification 1 | INTRODUCTION G protein-coupled receptors (GPCRs) are one of the membrane receptor proteins that generate intracellular signal transduction in response to various extracellular signals. The cell signaling by GPCRs is generally mediated through ligand-induced activation, which makes changes in the structure of the GPCRs and activates proteins that interact with their intracellular domains inside the cell, triggering multiple intracellular events such as Nam Hyuk Kim and Sumin Kang contributed equally to this work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.