Five regional climate models (RCMs)-CCLM, RegCM, HadGEM3-RA, SNURCM and WRF-participating in the Coordinated Regional Climate Downscaling Experiment-East Asia (CORDEX-EA) Phase 2 project are evaluated for their ability to simulate spatiotemporal variability in Asian summer precipitation. For this purpose, two dynamical downscaling sets, experiments forced by ERA-Interim reanalysis data (reproduction experiment) and historical data from three Coupled Model Intercomparison Project 5 (CMIP5) general circulation models (GCMs) (historical experiment) are analysed. The horizontal resolution of the
This study compares the bias correction techniques of empirical quantile mapping (QM) and the Long Short-Term Memory (LSTM) machine learning model for summertime daily rainfall simulation focusing on precipitation-dependent bias and temporal variation. Numerical experiments using Weather Research and Forecasting (WRF) were conducted over South Korea with lateral boundary conditions of ERA5 reanalysis data. For the spatial distribution of mean summertime rainfall, the bias-uncorrected WRF simulation (WRF_RAW) showed dry bias for most of the region of South Korea. The WRF results corrected by QM and LSTM (WRF_QM and WRF_LSTM, respectively) were improved for the mean summer rainfall simulation with the root mean square error values of 0.17 and 0.69, respectively, which were smaller than those of the WRF_RAW (1.10). Although the WRF_QM performed better than the WRF_LSTM in terms of the summertime mean and monthly precipitation, the WRF_LSTM presented a closer interannual rainfall variation to the observation than the WRF_QM. The coefficient of determination for calendar-day mean rainfall was the highest in the following order: the WRF_LSTM (0.451), WRF_QM (0.230), and WRF_RAW (0.201). However, the WRF_LSTM had a limitation in reproducing extreme rainfall exceeding 50 mm/day due to the few cases of extreme precipitation in training data. Nevertheless, the WRF_LSTM better simulated the observed light-to-moderate precipitation (10–50 mm/day) than the others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.