With the integration of cloud computing approaches in the healthcare systems, medical images are now processed and stored remotely on third-party servers. For such digital medical image data, privacy, protection, and security must be maintained by using image encryption methods. The aim of this paper is to design and apply a robust medical encryption framework to enhance the protection of medical image transformation and the patient information confidentiality. The proposed Framework encrypt the digital medical images using DNA computation and hyperchaotic RKF-45 random sequence approach. For which, the DNA computation is enhanced by applying hyperchaoticRKF-45 random key to the different Framework phases. The simulation results on different medical images were measured with various security analyses to prove the proposed framework randomness and coherent. Simulation results showed the ability of the hyperchaotic DNA encryption framework to withstand multiple electronic attacks with high performance compared to its counterparts of encryption algorithms. Finally, simulation and comparative studies have shown that, the proposed cryptography framework reported UACI and NPCR values 33.327 and 99.603 respectively, which are near to the theoretical optimal value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.