We have found that development of both deprivation-induced and lens-induced refractive errors in chickens implicates changes of the diurnal growth rhythms in the eye (Fig. 1). Because the major diurnal oscillator in the eye is expressed by the retinal dopamine/melatonin system, effects of drugs were studied that change retinal dopamine and/or serotonin levels. Vehicle-injected and drug-injected eyes treated with either translucent occluders or lenses were compared to focus on visual growth mechanisms. Retinal biogenic amine levels were measured at the end of each experiment by HPLC with electrochemical detection. For reserpine (which was most extensively studied) electroretinograms were recorded to test retinal function [Fig. 3 (C)] and catecholaminergic and serotonergic retinal neurons were observed by immunohistochemical labelling [Fig. 3(D)]. Deprivation myopia was readily altered by a single intravitreal injection of drugs that affected retinal dopamine or serotonin levels; reserpine which depleted both serotonin and dopamine stores blocked deprivation myopia very efficiently [Fig. 3(A)], whereas 5,7-dihydroxy-tryptamine (5,7-DHT), sulpiride, melatonin and Sch23390 could enhance deprivation myopia (Table 1, Fig. 5). In contrast to other procedures that were previously employed to block deprivation myopia (6-OHDA injections or continuous light) and which had no significant effect on lens-induced refractive errors, reserpine also affected lens-induced changes in eye growth. At lower doses, the effect was selective for negative lenses (Fig. 4). We found that the individual retinal dopamine levels were very variable among individuals but were correlated in both eyes of an animal; a similar variability was previously found with regard to deprivation myopia. To test a hypothesis raised by Li, Schaeffel, Kohler and Zrenner [(1992) Visual Neuroscience, 9, 483-492] that individual dopamine levels might determine the susceptibility to deprivation myopia, refractive errors were correlated with dopamine levels in occluded and untreated eyes of monocularly deprived chickens (Fig. 6). The hypothesis was rejected. Although it has been previously found that the static retinal tissue levels of dopamine are not altered by lens treatment, subtle changes in the ratio of DOPAC to dopamine were detected in the present study. The result indicates that retinal dopamine might be implicated also in lens-induced growth changes. Surprisingly, the changes were in the opposite direction for deprivation and negative lenses although both produce myopia. Currently, there is evidence that deprivation-induced and lens-induced refractive errors in chicks are produced by different mechanisms. However, findings (1), (3) and (5) suggest that there may also be common features. Although it has not yet been resolved how both mechanisms merge to produce the appropriate axial eye growth rates, we propose a scheme (Fig. 7).
Chickens were raised with either translucent occluders or lenses, both under normal light cycles (12–h light/12–h dark) and in constant light (CL). Under normal light cycles, eyes with occluders became very myopic, and eyes with lenses became either relatively hyperopic (positive lenses) or myopic (negative lenses). After the treatment, retinal dopamine (DA), DOPAC, and serotonin levels were measured by high-pressure liquid chromatography (HPLC-EC). A significant drop in daytime retinal DOPAC (-20%) was observed after 1 week of deprivation, and in both DOPAC (-40%) and DA (-30%) after 2 weeks of deprivation. No changes in retinal serotonin levels were found. Retinal DA or DOPAC content remained unchanged after 2 or 4 days of lens wearing even though the lenses had already exerted their maximal effect on axial eye growth. When the chickens were raised in CL, development of deprivation myopia was reduced (8 days CL) or entirely blocked (13 days CL). Lens-induced changes in eye growth were not different after either 6 or 11 days in CL, compared to animals raised in a normal light cycle. Thirteen days of CL resulted in a dramatic reduction of DA and DOPAC levels, but serotonin levels were also lowered. The results suggest that lens-induced changes in refraction may not be dependent on dopaminergic pathways whereas deprivation myopia requires normal diurnal DA rhythms to develop.
Previous experiments in chickens have shown that dopamine released from the retina may be one of the messengers controlling the growth of the underlying sclera. It is also possible, however, that the apparent relationship between dopamine and myopia is secondary and artifactual. We have done experiments to assess this hypothesis. Using High Pressure Liquid Chromatography with electrochemical detection (HPLC-ED), we have asked whether changes in dopamine metabolism are restricted to the local retinal regions in which myopia was locally induced. Furthermore, we have measured the concentrations of biogenic amines separately in different fundal layers (vitreous, retina, choroid, and sclera) to find out how changes induced by “deprivation” (= removal of high spatial frequencies from the retinal image by translucent eye occluders which produce “deprivation myopia”) are transmitted through these layers. Finally, we have repeated the deprivation experiments after intravitreal application of the irreversible dopamine re-uptake blocker reserpine to see how suppression of dopaminergic transmission affects these changes. We found that (1) Alterations in retinal dopamine metabolism were indeed restricted to the retinal areas in which myopia was induced. (2) The retina was the major source of dopamine release with a steep gradient both to the vitreal and choroidal side. Vitreal content was about one-tenth, choroidal content about one-third, and scleral content about one-twentieth of that of the retina. (3) There was a drop by about 40% in vitreal dopamine, DOPAC (3,4-dihydroxyphenylacetic acid) and HVA (homovanilic acid) concentrations following deprivation which occurred already at a time where little changes could yet be seen in their total retinal contents. (4) Choroidal and scleral dopamine levels were not affected by deprivation, indicating that other messengers must relay the information to the sclera. (5) A single intravitreal injection of reserpine lowered dopamine and HVA levels in retina and vitreous for at least 10 days in a dose-dependent fashion and diminished or suppressed further effects of deprivation on these compounds. DOPAC levels continued to change upon deprivation even after reserpine injection (Fig. 3). Our results suggest that the release rates of dopamine from retinal amacrine cells can be estimated from vitreal dopamine concentrations; furthermore, they are in line with the hypothesis that there is an inverse relationship between dopamine release and axial eye growth rates. Although our experiments do not ultimately prove that dopamine has a functional role in the visual control of eye growth, they are in line with this notion.
In some afoveate vertebrates refractive state appears to vary over the eye to match the average viewing distances of different areas of the visual field. However, precise measurements are difficult to obtain even in anesthetized animals, because standard methods of refraction are not designed for off-axis measurements and because the presence of astigmatism may fog the results. Therefore we developed a new automated objective technique, automated infrared photoretinoscopy, and measured off-axis refractions in alert chickens and amphibians. We found, in agreement with previous studies, that chickens (Gallus domesticus) are myopic and also have some astigmatism in the lower visual field. Lower-field myopia was, however, variable. It did not match the distance to the ground precisely, but it declined with age (as increased head height would predict). With-the-rule astigmatism was noticed in early posthatching development; it was striking even along the optic axis. The astigmatism lessened with age, as it does in human infants. Frogs (Rana pipiens and Rana temporaria) displayed pronounced myopic astigmatism that was confined to the lower visual field. Salamanders (Salamandra salamandra) and toads (Bufo bufo) showed less variation in refractive state across the visual field, although toads also were myopic in the lower visual field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.