Multiple excitations in core/shell CdSe/CdS-seeded nanorods of different core diameters are studied by quasi-cw multiexciton spectroscopy and envelope function theoretical calculations. For core diameters below 2.8 nm, a transfer from binding to repulsive behavior is detected for the biexciton, accompanied by significant reduction of the triexciton oscillator strength. These characteristics indicate a transition of the electronic excited states from type-I localization in the core to a quasi-type-II delocalization along the entire rod as the core diameter decreases, in agreement with theoretical calculations.
We report the synthesis of CdSe/CdS rod in rod core/shell heterostructures. These rods, synthesized using a seeded-growth approach, show narrow distributions of rod diameters and lengths and exhibit high emission quantum efficiencies and highly polarized emission. The degree of polarization is controlled by the inner core rod dimensions, and it is equal or up to 1.5 times higher than the polarization of equivalent sphere in rod systems. Using the method of photoselection we measure the polarization anisotropy at different excitation wavelengths and study the interplay between electronic contribution and dielectric effects in determining the absorption and emission polarization.
Gold growth on CdS nanorods and on seeded CdSe/CdS nanorods with and without illumination at different temperatures was studied. Two competing mechanisms were identified: thermal and light-induced growth. The thermal mechanism leads to growth of small gold particles at defects along the rod body and can be suppressed at lower temperatures. This control is attributed to a phase transition of the alkyl chains of the surface amine ligands to a static phase at lower temperatures, blocking the Au precursor's access to the nanorod surfaces. While a long-chain (C18) amine shows effective blocking at 293 K, a shorter chain (C12) amine shows the same result only at 273 K; however, in the case of a bulky trialkylamine, defect growth was observed even at 273 K. Light-induced growth leads to selective deposition of gold on one end of the rods. The tip was shown to grow on sulfur-rich facets of the nanorod, producing end-on and angled tip orientations. Growth under illumination with decreased temperature provides a highly selective synthesis of hybrid semiconductor nanorods with a single gold tip. Such anisotropic semiconductor-metal hybrids are of interest for self-assembly and photocatalysis and as building blocks in optoelectronic devices.
Trioctylphosphine (TOP, Sigma Aldrich, 90%) was vacuum distilled before use; all other chemicals were used as purchased: CdO (99.99+%), Selenium (99.999%),Trioctylphosphine oxide (TOPO 99%), Dodecylamine (DDA 98%), Didodecyldimethyl ammonium bromide (DDAB 98%) and Gold trichloride (99%) were purchased from Sigma Aldrich.Octadecylphosphonic acid (ODPA) and Hexylphosphonic acid (HPA) were purchased from PCI Synthesis.Sulfur (99.0+%) was purchased from Merck.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.