Objectives: Methane (CH4) breath test is an established diagnostic method for gastrointestinal functional disorders. Our aim was to explore the possible link between splanchnic circulatory changes and exhaled CH4 in an attempt to recognize intestinal perfusion failure. Design: Randomized, controlled in vivo animal study. Setting: University research laboratory. Subjects: Anesthetized, ventilated Sprague-Dawley rats (280 ± 30 g) and Vietnamese minipigs (31 ± 7 kg). Interventions: In the first series, CH4 was administered intraluminally into the ileum before 45 minutes mesenteric ischemia or before reperfusion in non-CH4 producer rats to test the appearance of the gas in the exhaled air. In the porcine experiments, the superior mesenteric artery was gradually obstructed during consecutive, 30-minute flow reductions and 30-minute reperfusions achieving complete occlusion after four cycles (n = 6), or nonocclusive mesenteric ischemia was induced by pericardial tamponade (n = 12), which decreased superior mesenteric artery flow from 351 ± 55 to 182 ± 67 mL/min and mean arterial pressure from 96.7 ± 18.2 to 41.5 ± 4.6 mm Hg for 60 minutes. Measurements and Main Results: Macrohemodynamics were monitored continuously; RBC velocity of the ileal serosa or mucosa was recorded by intravital videomicroscopy. The concentration of exhaled CH4 was measured online simultaneously with high-sensitivity photoacoustic spectroscopy. The intestinal flow changes during the occlusion-reperfusion phases were accompanied by parallel changes in breath CH4 output. Also in cardiac tamponade-induced nonocclusive intestinal ischemia, the superior mesenteric artery flow and RBC velocity correlated significantly with parallel changes in CH4 concentration in the exhaled air (Pearson’s r = 0.669 or r = 0.632, respectively). Conclusions: we report a combination of in vivo experimental data on a close association of an exhaled endogenous gas with acute mesenteric macro- and microvascular flow changes. Breath CH4 analysis may offer a noninvasive approach to follow the status of the splanchnic circulation.
OBJECTIVES Extracorporeal circulation induces cellular and humoral inflammatory reactions, thus possibly leading to detrimental secondary inflammatory responses. Previous data have demonstrated the bioactive potential of methane and confirmed its anti-inflammatory effects in model experiments. Our goal was to investigate the in vivo consequences of exogenous methane administration on extracorporeal circulation-induced inflammation. METHODS Two groups of anaesthetized Vietnamese minipigs (non-treated and methane treated, n = 5 each) were included. Standard central cannulation was performed, and extracorporeal circulation was maintained for 120 min without cardiac arrest or ischaemia, followed by an additional 120-min observation period with haemodynamic monitoring. In the methane-treated group, 2.5% v/v methane–normoxic air mixture was added to the oxygenator sweep gas. Blood samples through the central venous line and tissue biopsies from the heart, ileum and kidney were taken at the end point to determine the whole blood superoxide production (chemiluminometry) and the activity of xanthine-oxidoreductase and myeloperoxidase, with substrate-specific reactions. RESULTS Methane treatment resulted in significantly higher renal blood flow during the extracorporeal circulation period compared to the non-treated group (63.9 ± 16.4 vs 29.0 ± 9.3 ml/min). Whole blood superoxide production (548 ± 179 vs 1283 ± 193 Relative Light Unit (RLU)), ileal myeloperoxidase (2.23 ± 0.2 vs 3.26 ± 0.6 mU/(mg protein)) and cardiac (1.5 ± 0.6 vs 4.7 ± 2.5 pmol/min/mg), ileal (2.2 ± 0.6 vs 7.0 ± 3.4 pmol/min/mg) and renal (1.2 ± 0.8 vs 13.3 ± 8.0 pmol/min/mg) xanthine-oxidoreductase activity were significantly lower in the treated group. CONCLUSIONS The addition of bioactive gases, such as methane, through the oxygenator of the extracorporeal circuit represents a novel strategy to influence the inflammatory effects of extracorporeal perfusion in cardiac surgical procedures.
Objectives: Pericardial tamponade is a life-threatening medical emergency, when the hemodynamic consequences of low cardiac output severely disturb the perfusion of the peripheral tissues. Our aim was to design a reliable large animal model to reproduce the clinical scenario with the relevant pathophysiological consequences of pericardial tamponade-induced cardiogenic shock. Material and Methods: Anesthetized Vietnamese mini pigs were used (n=12). Following laparotomy, a cannula was fixed into the pericardium through the diaphragm without thoracotomy. A sham-operated group (n=6) served as control, while in the second group (n=6) pericardial tamponade was induced by intra-pericardial injection of heparinized own blood. Throughout the 60-min pericardial tamponade and the 180-min reperfusion, macro hemodynamics, renal circulation and the mesenteric macro-and micro-circulatory parameters were monitored. Myeloperoxidase activity was measured to detect neutrophil leukocyte accumulation and in vivo histology was performed by confocal laser scanning endomicroscopy to observe the structural changes of the intestinal mucosa. Results: PT increased the central venous pressure, heart rate, and decreased mean arterial pressure. The mesenteric artery flow (from 355.5±112.4 vs 182.0±59.1 mL/min) and renal arterial flow (from 159.63±50.7 vs 35.902±27.9 mL//min) and the micro-circulation of the ileum was reduced. The myeloperoxidase activity was elevated (from 3.66±1.6 to 7.01±1.44 mU/mg protein) and manifest injury of the ileal mucosa was present. Conclusion: This experimental model suitably mimics the hemodynamics and the pathology of clinical pericardial tamponade situations, and on this basis, it provides an opportunity to study the adverse macro-and micro-circulatory effects and biochemical consequences of human cardiogenic shock.
The reproducible large animal model is suitable for clinically relevant investigations of the hemodynamic and biochemical consequences of PT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.