Our study highlights the antinociceptive effect of this technique and may contribute to the understanding of the mechanisms underlying pain relief. The pharmacologic prolongation of the excitability-diminishing after-effects would render the method applicable to different patient populations with chronic pain.
While the involvement of executive processes in mind wandering is largely undebated, their exact relationship is subject to an ongoing debate and rarely studied dynamically within‐subject. Several brain‐stimulation studies using transcranial direct current stimulation (tDCS) have attempted to modulate mind‐wandering propensity by stimulating the left dorsolateral prefrontal cortex (DLPFC) which is an important hub in the prefrontal control network. In a series of three studies testing a total of N = 100 participants, we develop a novel task that allows to study the dynamic interplay of mind wandering, behavioural varibility and the flexible recruitment of executive resources as indexed by the randomness (entropy) of movement sequences generated by our participants. We consistently find that behavioural variability is increased and randomness is decreased during periods of mind wandering. Interestingly, we also find that behavioural variability interacts with the entropy‐MW effect, opening up the possibility to detect distinct states of off‐focus cognition. When applying a high‐definition transcranial direct‐current stimulation (HD‐tDCS) montage to the left DLPFC, we find that propensity to mind wander is reduced relative to a group receiving sham stimulation.
The ability to control the occurrence of rewarding and punishing events is crucial for our well-being. Two ways to optimize performance are to follow heuristics like Pavlovian biases to approach reward and avoid loss or to rely more on slowly accumulated stimulus–action associations. Although reduced control over outcomes has been linked to suboptimal decision-making in clinical conditions associated with learned helplessness, it is unclear how uncontrollability of the environment is related to the arbitration between different response strategies. This study directly tested whether a behavioral manipulation designed to induce learned helplessness in healthy adults (intermittent loss of control over feedback in a reinforcement learning task; “yoking”) would modulate the magnitude of Pavlovian bias and the neurophysiological signature of cognitive control (frontal midline theta power) in healthy adults. Using statistical analysis and computational modeling of behavioral data and electroencephalographic signals, we found stronger Pavlovian influences and alterations in frontal theta activity in the yoked group. However, these effects were not accompanied by reduced performance in experimental blocks with regained control, indicating that our behavioral manipulation was not potent enough for inducing helplessness and impaired coping ability with task demands. We conclude that the level of contingency between instrumental choices and rewards/punishments modulates Pavlovian bias during value-based decision-making, probably via interfering with the implementation of cognitive control. These findings might have implications for understanding the mechanisms underlying helplessness in various psychiatric conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.