In this paper we develop a measure-theoretic method to treat problems in hypergraph theory.Our central theorem is a correspondence principle between three objects: An increasing hypergraph sequence, a measurable set in an ultraproduct space and a measurable set in a finite dimensional Lebesgue space. Using this correspondence principle we build up the theory of dense hypergraphs from scratch. Along these lines we give new proofs for the Hypergraph Removal Lemma, the Hypergraph Regularity Lemma, the Counting Lemma and the Testability of Hereditary Hypergraph Properties. We prove various new results including a strengthening of the Regularity Lemma and an Inverse Counting Lemma. We also prove the equivalence of various notions for convergence of hypergraphs and we construct limit objects for such sequences. We prove that the limit objects are unique up to a certain family of measure preserving transformations. As our main tool we study the integral and measure theory on the ultraproduct of finite measure spaces which is interesting on its own right. *
We prove that Connes' Embedding Conjecture holds for the von Neumann algebras of sofic groups, that is sofic groups are hyperlinear. Hence we provide some new examples of hyperlinearity. We also show that the Determinant Conjecture holds for sofic groups as well. We introduce the notion of essentially free actions and amenable actions and study their properties.
Answering some queries of Weiss [5], we prove that the free product and amenable extensions of sofic groups are sofic as well, and give an example of a finitely generated sofic group that is not residually amenable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.