In Medicago nodules, endoreduplication cycles and ploidy-dependent cell enlargement occur during the differentiation of bacteroid-containing nitrogen-fixing symbiotic cells. These events are accompanied by the expression of ccs52A , a plant ortholog of the yeast and animal cdh1/srw1/fzr genes, acting as a substrate-specific activator of the anaphase-promoting complex (APC) ubiquitin ligase. Because CCS52A is involved in the transition of mitotic cycles to endoreduplication cycles, we investigated the importance of somatic endoploidy and the role of the M. truncatula ccs52A gene in symbiotic cell differentiation. Transcription analysis and ccs52A promoter-driven  -glucuronidase activity in transgenic plants showed that ccs52A was dispensable for the mitotic cycles and nodule primordium formation, whereas it was induced before nodule differentiation. The CCS52A protein was present in the nucleus of endoreduplication-competent cells, indicating that it may activate APC constitutively during the endoreduplication cycles. Downregulation of ccs52A in transgenic M. truncatula plants drastically affected nodule development, resulting in lower ploidy, reduced cell size, inefficient invasion, and the maturation of symbiotic cells, accompanied by early senescence and finally the death of both the bacterium and plant cells. Thus, ccs52A expression is essential for the formation of large highly polyploid symbiotic cells, and endoreduplication is an integral part of normal nodule development.
The ndh genes encoding for the subunits of NAD(P)H dehydrogenase complex represent the largest family of plastid genes without a clearly defined function. Tobacco (Nicotiana tabacum) plastid transformants were produced in which the ndhB gene was inactivated by replacing it with a mutant version possessing translational stops in the coding region. Western-blot analysis indicated that no functional NAD(P)H dehydrogenase complex can be assembled in the plastid transformants. Chlorophyll fluorescence measurements showed that dark reduction of the plastoquinone pool by stromal reductants was impaired in ndhB-inactivated plants. Both the phenotype and photosynthetic performance of the plastid transformants was completely normal under favorable conditions. However, an enhanced growth retardation of ndhB-inactivated plants was revealed under humidity stress conditions causing a moderate decline in photosynthesis via stomatal closure. This distinctive phenotype was mimicked under normal humidity by spraying plants with abscisic acid. Measurements of CO 2 fixation demonstrated an enhanced decline in photosynthesis in the mutant plants under humidity stress, which could be restored to wild-type levels by elevating the external CO 2 concentration. These results suggest that the plastid NAD(P)H:plastoquinone oxidoreductase in tobacco performs a significant physiological role by facilitating photosynthesis at moderate CO 2 limitation.
BackgroundProgress in plant cell cycle research is highly dependent on reliable methods for detection of cells replicating DNA. Frequency of S-phase cells (cells in DNA synthesis phase) is a basic parameter in studies on the control of cell division cycle and the developmental events of plant cells. Here we extend the microscopy and flow cytometry applications of the recently developed EdU (5-ethynyl-2'-deoxyuridine)-based S-phase assay to various plant species and tissues. We demonstrate that the presented protocols insure the improved preservation of cell and tissue structure and allow significant reduction in assay duration. In comparison with the frequently used detection of bromodeoxyuridine (BrdU) and tritiated-thymidine incorporation, this new methodology offers several advantages as we discuss here.ResultsApplications of EdU-based S-phase assay in microscopy and flow cytometry are presented by using cultured cells of alfalfa, Arabidopsis, grape, maize, rice and tobacco. We present the advantages of EdU assay as compared to BrdU-based replication assay and demonstrate that EdU assay -which does not require plant cell wall digestion or DNA denaturation steps, offers reduced assay duration and better preservation of cellular, nuclear and chromosomal morphologies. We have also shown that fast and efficient EdU assay can also be an efficient tool for dual parameter flow cytometry analysis and for quantitative assessment of replication in thick root samples of rice.ConclusionsIn plant cell cycle studies, EdU-based S-phase detection offers a superior alternative to the existing S-phase assays. EdU method is reliable, versatile, fast, simple and non-radioactive and it can be readily applied to many different plant systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.