Abstract. This paper addresses a problem arising in the reverse engineering of solid models from depth-maps. We wish to identify and fit surfaces of known type wherever these are a good fit. This paper presents a set of methods for the least-squares fitting of spheres, cylinders, cones and tori to three-dimensional point data. Least-squares fitting of surfaces other planes, even of simple geometric type, has been little studied. Our method has the particular advantage of being robust in the sense that as the principal curvatures of the surfaces being fitted decrease (or become more equal), the results which are returned naturally become closer and closer to those surfaces of 'simpler type', i.e. planes, cylinders, cones, or spheres which best describe the data, unlike other methods which may diverge as various parameters or their combination become infinite.1
ÐThis paper addresses a common problem in the segmentation of range images. We would like to identify and fit surfaces of known type wherever these are a good fit. This paper presents methods for the least-squares fitting of spheres, cylinders, cones, and tori to 3D point data, and their application within a segmentation framework. Least-squares fitting of surfaces other than planes, even of simple geometric type, has been rarely studied. Our main application areas of this research are reverse engineering of solid models from depth-maps and automated 3D inspection where reliable extraction of these surfaces is essential. Our fitting method has the particular advantage of being robust in the presence of geometric degeneracy, i.e., as the principal curvatures of the surfaces being fitted decrease (or become more equal), the results returned naturally become closer and closer to those surfaces of ªsimpler type,º i.e., planes, cylinders, cones, or spheres, which best describe the data. Many other methods diverge because, in such cases, various parameters or their combination become infinite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.