The SNARE complex, consisting of synaptobrevin, syntaxin, and SNAP-25, is essential for calcium-triggered exocytosis in neurosecretory cells. Little is known, however, about how developmentally regulated isoforms and other cognate SNARE components regulate vesicular fusion. To address this question, we examined neuroexocytosis from chromaffin cells of Snap25 null mice rescued by the two splice variants SNAP-25a and SNAP-25b and the ubiquitously expressed homolog SNAP-23. In the absence of SNAP-25, vesicle docking persisted, but primed vesicle pools were empty and fast calcium-triggered release abolished. Single vesicular fusion events showed normal characteristics, except for a shorter duration of the fusion pore. Overexpression of SNAP-25a, SNAP-25b, and SNAP-23 resulted in three distinct phenotypes; SNAP-25b induced larger primed vesicle pools than SNAP-25a, whereas SNAP-23 did not support a standing pool of primed vesicles. We conclude that three alternative SNARE components support exocytosis, but they differ in their ability to stabilize vesicles in the primed state.
Uropathogenic Escherichia coli (UPEC) strain 536 (O6:K15:H31) is one of the model organisms of extraintestinal pathogenic E. coli (ExPEC). To analyze this strain's genetic basis of urovirulence, we sequenced the entire genome and compared the data with the genome sequence of UPEC strain CFT073 (O6:K2:H1) and to the available genomes of nonpathogenic E. coli strain MG1655 (K-12) and enterohemorrhagic E. coli. The genome of strain 536 is Ϸ292 kb smaller than that of strain CFT073. Genomic differences between both UPEC are mainly restricted to large pathogenicity islands, parts of which are unique to strain 536 or CFT073. Genome comparison underlines that repeated insertions and deletions in certain parts of the genome contribute to genome evolution. Furthermore, 427 and 432 genes are only present in strain 536 or in both UPEC, respectively. The majority of the latter genes is encoded within smaller horizontally acquired DNA regions scattered all over the genome. Several of these genes are involved in increasing the pathogens' fitness and adaptability. Analysis of virulence-associated traits expressed in the two UPEC O6 strains, together with genome comparison, demonstrate the marked genetic and phenotypic variability among UPEC. The ability to accumulate and express a variety of virulence-associated genes distinguishes ExPEC from many commensals and forms the basis for the individual virulence potential of ExPEC. Accordingly, instead of a common virulence mechanism, different ways exist among ExPEC to cause disease.fitness ͉ genome comparison ͉ uropathogenic Escherichia coli
During exocytosis a four-helical coiled coil is formed between the three SNARE proteins syntaxin, synaptobrevin and SNAP-25, bridging vesicle and plasma membrane. We have investigated the assembly pathway of this complex by interfering with the stability of the hydrophobic interaction layers holding the complex together. Mutations in the C-terminal end affected fusion triggering in vivo and led to two-step unfolding of the SNARE complex in vitro, indicating that the C-terminal end can assemble/disassemble independently. Free energy perturbation calculations showed that assembly of the C-terminal end could liberate substantial amounts of energy that may drive fusion. In contrast, similar N-terminal mutations were without effects on exocytosis, and mutations in the middle of the complex selectively interfered with upstream maturation steps (vesicle priming), but not with fusion triggering. We conclude that the SNARE complex forms in the N-to C-terminal direction, and that a partly assembled intermediate corresponds to the primed vesicle state.
During exocytosis, certain phospholipids may act as regulators of secretion. Here, we used several independent approaches to perturb the phosphatidylinositol-4,5-bisphosphate [PI(4,5)P 2 ] level in bovine chromaffin cells to investigate how changes of plasmalemmal PI(4,5)P 2 affect secretion. Membrane levels of PI(4,5)P 2 were estimated by analyzing images of lawns of plasma membranes labeled with fluorescent probes specific for PI(4,5)P 2 . The specific PI(4,5)P 2 signal was enriched in submicrometer-sized clusters. In parallel patch-clamp experiments on intact cells, we measured the secretion of catecholamines. Overexpression of phosphatidylinositol-4-phosphate-5-kinase I␥, or infusion of PI(4,5)P 2 through the patch pipette, increased the PI(4,5)P 2 level in the plasma membrane and potentiated secretion. Expression of a membrane-targeted inositol 5-phosphatase domain of synaptojanin 1 eliminated PI(4,5)P 2 from the membrane and abolished secretion. An inhibitor of phosphatidylinositol-3 kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one, led to a transient increase in the PI(4,5)P 2 level that was associated with a potentiation of secretion. After prolonged incubation, the level of PI(4,5)P 2 decreased and secretion was inhibited. Kinetic analysis showed that changes in PI(4,5)P 2 levels led to correlated changes in the size of two releasable vesicle pools, whereas their fusion kinetics remained unaffected. We conclude that during both short-and long-term manipulations of PI(4,5)P 2 level secretion scales with plasma membrane PI(4,5)P 2 content and that PI(4,5)P 2 has an early effect on secretion by regulating the number of vesicles ready for release.
Protein kinase A (PKA) is a key regulator of neurosecretion, but the molecular targets remain elusive. We combined pharmacological manipulations of kinase and phosphatase activities with mutational studies on the exocytotic machinery driving fusion of catecholamine-containing vesicles from chromaffin cells. We found that constitutive PKA activity was necessary to maintain a large number of vesicles in the release-ready, so-called primed, state, whereas calcineurin (protein phosphatase 2B) activity antagonized this effect. Overexpression of the SNARE protein SNAP-25a mutated in a PKA phosphorylation site (Thr-138) eliminated the effect of PKA inhibitors on the vesicle priming process. Another, unidentified, PKA target regulated the relative size of two different primed vesicle pools that are distinguished by their release kinetics. Overexpression of the SNAP-25b isoform increased the size of both primed vesicle pools by a factor of two, and mutations in the conserved Thr-138 site had similar effects as in the a isoform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.