Mucor circinelloides and other members of Mucorales are filamentous fungi, widely used as model organisms in basic and applied studies. Although genetic manipulation methods have been described for some Mucoral fungi, construction of stable integrative transformants by homologous recombination has remained a great challenge in these organisms. In the present study, a plasmid free CRISPR-Cas9 system was firstly developed for the genetic modification of a Mucoral fungus. The described method offers a rapid but robust tool to obtain mitotically stable mutants of M. circinelloides via targeted integration of the desired DNA. It does not require plasmid construction and its expression in the recipient organism. Instead, it involves the direct introduction of the guide RNA and the Cas9 enzyme and, in case of homology directed repair (HDR), the template DNA into the recipient strain. Efficiency of the method for non-homologous end joining (NHEJ) and HDR was tested by disrupting two different genes, i.e. carB encoding phytoene dehydrogenase and hmgR2 encoding 3-hydroxy-3-methylglutaryl-CoA reductase, of M. circinelloides. Both NHEJ and HDR resulted in stable gene disruption mutants. While NHEJ caused extensive deletions upstream from the protospacer adjacent motif, HDR assured the integration of the deletion cassette at the targeted site.
BackgroundPrecursors of sterols, carotenoids, the prenyl groups of several proteins and other terpenoid compounds are synthesised via the acetate-mevalonate pathway. One of the key enzyme of this pathway is the 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, which catalyses the conversion of HMG-CoA to mevalonate. HMG-CoA reductase therefore affects many biological processes, such as morphogenesis, synthesis of different metabolites or adaptation to environmental changes. In this study, transcription of the three HMG-CoA reductase genes (designated as hmgR1, hmgR2 and hmgR3) of the β-carotene producing Mucor circinelloides has been analysed under various culturing conditions; effect of the elevation of their copy number on the carotenoid and ergosterol content as well as on the sensitivity to statins has also been examined.ResultsTranscripts of each gene were detected and their relative levels varied under the tested conditions. Transcripts of hmgR1 were detected only in the mycelium and its relative transcript level seems to be strongly controlled by the temperature and the oxygen level of the environment. Transcripts of hmgR2 and hmgR3 are already present in the germinating spores and the latter is also strongly regulated by oxygen. Overexpression of hmgR2 and hmgR3 by elevating their copy numbers increased the carotenoid content of the fungus and decreased their sensitivity to statins.ConclusionsThe three HMG-CoA reductase genes of M. circinelloides displayed different relative transcript levels under the tested conditions suggesting differences in their regulation. They seem to be especially involved in the adaptation to the changing oxygen tension and osmotic conditions of the environment as well as to statin treatment. Overexpression of hmgR2 and hmgR3 may be used to improve the carotenoid content.
Canthaxanthin is a natural diketo derivative of β-carotene primarily used by the food and feed industries. Mucor circinelloides is a β-carotene-accumulating zygomycete fungus and one of the model organisms to study the carotenoid biosynthesis in fungi. In this study, the β-carotene ketolase gene (crtW) of the marine bacterium Paracoccus sp. N81106 fused with fungal promoter and terminator regions was integrated into the M. circinelloides genome to construct stable canthaxanthin-producing strains. Different transformation methods including polyethylene glycol-mediated transformation with linear DNA fragments, restriction enzyme-mediated integration and Agrobacterium tumefaciens-mediated transformation were tested to integrate the crtW gene into the Mucor genome. Mitotic stability, site of integration and copy number of the transferred genes were analysed in the transformants, and several stable strains containing the crtW gene in high copy number were isolated. Carotenoid composition of selected transformants and effect of culturing conditions, such as temperature, carbon sources and application of certain additives in the culturing media, on their carotenoid content were analysed. Canthaxanthin-producing transformants were able to survive at higher growth temperature than the untransformed strain, maybe due to the effect of canthaxanthin on the membrane fluidity and integrity. With the application of glucose, trehalose, dihydroxyacetone and L-aspartic acid as sole carbon sources in minimal medium, the crtW-expressing M. circinelloides strain, MS12+pCA8lf/1, produced more than 200 μg/g (dry mass) of canthaxanthin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.