The pathology of Alzheimer’s disease is connected to the aggregation of β-amyloid (Aβ) peptide, which in vivo exists as a number of length-variants. Truncations and extensions are found at both...
The ability to produce new molecules of potential pharmaceutical relevance via combinatorial biosynthesis hinges on improving our understanding of acyl-carrier protein (ACP)-protein interactions. However, the weak and transient nature of these interactions makes them difficult to study using traditional spectroscopic approaches. Herein we report that converting the terminal thiol of the E. coli ACP 4′-phosphopantetheine arm into a mixed disulfide with 2-nitro-5-thiobenzoate ion (TNB−) activates this site to form a selective covalent cross-link with the active site cysteine of a cognate ketoacyl synthase (KS). The concomitant release of TNB2−, which absorbs at 412 nm, provides a visual and quantitative measure of mechanistically relevant ACP-KS interactions. The colorimetric assay can propel the engineering of biosynthetic routes to novel chemical diversity by providing a high-throughput screen for functional hybrid ACP-KS partnerships as well as the discovery of novel antimicrobial agents by enabling the rapid identification of small molecule inhibitors of ACP-KS interactions.
Self-assembling peptide-based hydrogels are a class of tunable soft materials that have been shown to be highly useful for a number of biomedical applications. The dynamic formation of the supramolecular fibrils that compose these materials has heretofore remained poorly characterized. A better understanding of this process would provide important insights into the behavior of these systems and could aid in the rational design of new peptide hydrogels. Here, we report the determination of the microscopic steps that underpin the self-assembly of a hydrogelforming peptide, SgI 37-49 . Using theoretical models of linear polymerization to analyze the kinetic self-assembly data, we show that SgI 37-49 fibril formation is driven by fibril-catalyzed secondary nucleation and that all the microscopic processes involved in SgI 37-49 self-assembly display an enzyme-like saturation behavior. Moreover, this analysis allows us to quantify the rates of the underlying processes at different peptide concentrations and to calculate the time evolution of these reaction rates over the time course of self-assembly. We demonstrate here a new mechanistic approach for the study of self-assembling hydrogel-forming peptides, which is complementary to commonly used materials science characterization techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.