IntroductionGlycemic variability as a marker of endogenous and exogenous factors, and glucose complexity as a marker of endogenous glucose regulation are independent predictors of mortality in critically ill patients. We evaluated the impact of real time continuous glucose monitoring (CGM) on glycemic variability in critically ill patients on intensive insulin therapy (IIT), and investigated glucose complexity - calculated using detrended fluctuation analysis (DFA) - in ICU survivors and non-survivors.MethodsRetrospective analysis were conducted of two prospective, randomized, controlled trials in which 174 critically ill patients either received IIT according to a real-time CGM system (n = 63) or according to an algorithm (n = 111) guided by selective arterial blood glucose measurements with simultaneously blinded CGM for 72 hours. Standard deviation, glucose lability index and mean daily delta glucose as markers of glycemic variability, as well as glucose complexity and mean glucose were calculated.ResultsGlycemic variability measures were comparable between the real time CGM group (n = 63) and the controls (n = 111). Glucose complexity was significantly lower (higher DFA) in ICU non-survivors (n = 36) compared to survivors (n = 138) (DFA: 1.61 (1.46 to 1.68) versus 1.52 (1.44 to 1.58); P = 0.003). Diabetes mellitus was significantly associated with a loss of complexity (diabetic (n = 33) versus non-diabetic patients (n = 141) (DFA: 1.58 (1.48 to 1.65) versus 1.53 (1.44 to 1.59); P = 0.01).ConclusionsIIT guided by real time CGM did not result in significantly reduced glycemic variability. Loss of glucose complexity was significantly associated with mortality and with the presence of diabetes mellitus.
ObjectivesTo analyze alterations in left ventricular (LV) myocardial T1 times in patients with pulmonary hypertension (PH) and to investigate their associations with ventricular function, mass, geometry and hemodynamics.MethodsFifty-eight patients with suspected PH underwent right heart catheterization (RHC) and 3T cardiac magnetic resonance imaging. Ventricular function, geometry and mass were derived from cine real-time short-axis images. Myocardial T1 maps were acquired by a prototype modified Look-Locker inversion-recovery sequence in short-axis orientations. LV global, segmental and ventricular insertion point (VIP) T1 times were evaluated manually and corrected for blood T1.ResultsSeptal, lateral, global and VIP T1 times were significantly higher in PH than in non-PH subjects (septal, 1249 ± 58 ms vs. 1186 ± 33 ms, p < 0.0001; lateral, 1190 ± 45 ms vs. 1150 ± 33 ms, p = 0.0003; global, 1220 ± 52 ms vs. 1171 ± 29 ms, p < 0.0001; VIP, 1298 ± 78 ms vs. 1193 ± 31 ms, p < 0.0001). In PH, LV eccentricity index was the strongest linear predictor of VIP T1 (r = 0.72). Septal, lateral and global T1 showed strong correlations with VIP T1 (r = 0.81, r = 0.59 and r = 0.75, respectively).ConclusionsIn patients with PH, T1 times in VIPs and in the entire LV myocardium are elevated. LV eccentricity strongly correlates with VIP T1 time, which in turn is strongly associated with T1 time changes in the entire LV myocardium.Key Points • Native T1 mapping detects left ventricular myocardial alterations in pulmonary hypertension • In pulmonary hypertension, native T1 times at ventricular insertion points are increased • These T1 times correlate strongly with left ventricular eccentricity • In pulmonary hypertension, global and segmental myocardial T1 times are increased • Global, segmental and ventricular insertion point T1 times are strongly correlated
BackgroundThe hypertensive deoxy-corticosterone acetate (DOCA)-salt-treated pig (hereafter, DOCA pig) was recently introduced as large animal model for early-stage heart failure with preserved ejection fraction (HFpEF). The aim of the present study was to evaluate cardiovascular magnetic resonance (CMR) of DOCA pigs and weight-matched control pigs to characterize ventricular, atrial and myocardial structure and function of this phenotype model.MethodsFive anesthetized DOCA and seven control pigs underwent 3 T CMR at rest and during dobutamine stress. Left ventricular/atrial (LV/LA) function and myocardial mass (LVMM), strains and torsion were evaluated from (tagged) cine imaging. 4D phase-contrast measurements were used to assess blood flow and peak velocities, including transmitral early-diastolic (E) and myocardial tissue (E’) velocities and coronary sinus blood flow. Myocardial perfusion reserve was estimated from stress-to-rest time-averaged coronary sinus flow. Global native myocardial T1 times were derived from prototype modified Look-Locker inversion-recovery (MOLLI) short-axis T1 maps. After in-vivo measurements, transmural biopsies were collected for stereological evaluation including the volume fractions of interstitium (VV(int/LV)) and collagen (VV(coll/LV)). Rest, stress, and stress-to-rest differences of cardiac and myocardial parameters in DOCA and control animals were compared by t-test.ResultsIn DOCA pigs LVMM (p < 0.001) and LV wall-thickness (end-systole/end-diastole, p = 0.003/p = 0.007) were elevated. During stress, increase of LV ejection-fraction and decrease of end-systolic volume accounted for normal contractility reserves in DOCA and control pigs. Rest-to-stress differences of cardiac index (p = 0.040) and end-diastolic volume (p = 0.042) were documented. Maximal (p = 0.042) and minimal (p = 0.012) LA volumes in DOCA pigs were elevated at rest; total LA ejection-fraction decreased during stress (p = 0.006). E’ was lower in DOCA pigs, corresponding to higher E/E’ at rest (p = 0.013) and stress (p = 0.026). Myocardial perfusion reserve was reduced in DOCA pigs (p = 0.031). T1-times and VV(int/LV) did not differ between groups, whereas VV(coll/LV) levels were higher in DOCA pigs (p = 0.044).ConclusionsLA enlargement, E’ and E/E’ were the markers that showed the most pronounced differences between DOCA and control pigs at rest. Inadequate increase of myocardial perfusion reserve during stress might represent a metrics for early-stage HFpEF. Myocardial T1 mapping could not detect elevated levels of myocardial collagen in this model.Trial registrationThe study was approved by the local Bioethics Committee of Vienna, Austria (BMWF-66.010/0091-II/3b/2013).
The 'renal threshold for glucose' has never been evaluated in critically ill patients. Therefore, we aimed to investigate the renal glucose threshold in this patient group using high-sensitivity urine glucose assays. In this retrospective analysis of prospectively collected data, we analysed 100 consecutive critically ill patients from a medical intensive care unit (ICU). Arterial blood glucose and spot urine glucose were simultaneously quantified daily during the first week after ICU admission. Three hundred seventy-three pairs of blood/urine glucose were plotted in five pre-defined categories of blood glucose (<80, 80-109, 110-139, 140-179 and ≥180 mg/dL). Urine glucose values of the five categories were compared using the Kruskal-Wallis test to assess the relation with blood glucose. Urine glucose was detected in virtually all of the urine samples. Urine glucose showed a positive nonlinear correlation with blood glucose and was significantly elevated at blood glucose levels of 140-179 and ≥180 mg/dL compared with lower blood glucose ranges. Basal glucosuria is ubiquitous in critically ill patients. A 'soft' renal threshold for glucose is present at blood glucose levels in the range of 140-179 mg/dL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.