The essential metabolic enzyme CTP synthase (CTPsyn) can be compartmentalised to form an evolutionarily-conserved intracellular structure termed the cytoophidium. Recently, it has been demonstrated that the enzymatic activity of CTPsyn is attenuated by incorporation into cytoophidia in bacteria and yeast cells. Here we demonstrate that CTPsyn is regulated in a similar manner in Drosophila tissues in vivo. We show that cytoophidium formation occurs during nutrient deprivation in cultured cells, as well as in quiescent and starved neuroblasts of the Drosophila larval central nervous system. We also show that cytoophidia formation is reversible during neurogenesis, indicating that filament formation regulates pyrimidine synthesis in a normal developmental context. Furthermore, our global metabolic profiling demonstrates that CTPsyn overexpression does not significantly alter CTPsyn-related enzymatic activity, suggesting that cytoophidium formation facilitates metabolic stabilisation. In addition, we show that overexpression of CTPsyn only results in moderate increase of CTP pool in human stable cell lines. Together, our study provides experimental evidence, and a mathematical model, for the hypothesis that inactive CTPsyn is incorporated into cytoophidia.
The Drosophila brain is a work horse in neuroscience. Single-cell transcriptome analysis 1-5 , 3D morphological classification 6 , and detailed EM mapping of the connectome 7-10 have revealed an immense diversity of neuronal and glial cell types that underlie the wide array of functional and behavioral traits in the fruit fly. The identities of these cell types are controlled by -still unknowngene regulatory networks (GRNs), involving combinations of transcription factors that bind to genomic enhancers to regulate their target genes. To characterize the GRN for each cell type in the Drosophila brain, we profiled chromatin accessibility of 240,919 single cells spanning nine developmental timepoints, and integrated this data with single-cell transcriptomes. We identify more than 95,000 regulatory regions that are used in different neuronal cell types, of which around 70,000 are linked to specific developmental trajectories, involving neurogenesis, reprogramming and maturation. For 40 cell types, their uniquely accessible regions could be associated with their expressed transcription factors and downstream target genes, through a combination of motif discovery, network inference techniques, and deep learning. We illustrate how these "enhancer-GRNs" can be used to reveal enhancer architectures leading to a better understanding of neuronal regulatory diversity. Finally, our atlas of regulatory elements can be used to design genetic driver lines for specific cell types at specific timepoints, facilitating the characterization of brain cell types and the manipulation of brain function. MainThe brain consists of a myriad of different neuronal and glial types, each unique in their morphology and function. The Drosophila brain, which contains around 100,000 cells, is uniquely positioned as a model in which the diversity of brain cell types can be investigated. Recent advances in electron microscopy have allowed the creation of connectome maps of the different regions in the Drosophila brain 7-10 , while the availability of genetic driver lines 11 provides genetic access to many cell types for understanding neuronal function 12 . Furthermore, this diversity of cell types has been bolstered by single-cell transcriptomics on the adult brain 1-5 , the larval brain [13][14][15] , and the ventral nerve cord 16 . The recent development of single-cell assay for transposase accessible chromatin by sequencing (scATAC-seq), makes it possible to measure chromatin accessibility of single cells in high throughput 17,18 , providing an additional crucial layer of information underlying neuronal identity: which genomic regions encode the regulatory information to create and maintain each cell type. The integrated analysis of transcriptomics and chromatin accessibility makes it then possible to jointly study enhancers and gene expression to discover precise regulatory programs across cell types [19][20][21] .Cell type identity is defined by the activity of GRNs in which combinations of transcription factors activate or repress target genes....
During development eukaryotic gene expression is coordinated by dynamic changes in chromatin structure. Measurements of accessible chromatin are used extensively to identify genomic regulatory elements. Whilst chromatin landscapes of pluripotent stem cells are well characterised, chromatin accessibility changes in the development of somatic lineages are not well defined. Here we show that cell-specific chromatin accessibility data can be produced via ectopic expression of E. coli Dam methylase in vivo, without the requirement for cell-sorting (CATaDa). We have profiled chromatin accessibility in individual cell-types of Drosophila neural and midgut lineages. Functional cell-type-specific enhancers were identified, as well as novel motifs enriched at different stages of development. Finally, we show global changes in the accessibility of chromatin between stem-cells and their differentiated progeny. Our results demonstrate the dynamic nature of chromatin accessibility in somatic tissues during stem cell differentiation and provide a novel approach to understanding gene regulatory mechanisms underlying development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.