Background A vectorcardiography approach to electrocardiology contributes to the non-invasive assessment of electrical heterogeneity in the ventricles of the heart and to risk stratification for cardiac events including sudden cardiac death. The aim of this study was to develop an automatic method that identifies a representative QRST complex (QRSonset to Tend) from a Frank vectorcardiogram (VCG). This method should provide reliable measurements of morphological VCG parameters and signal when such measurements required manual scrutiny. Methods Frank VCG was recorded in a population-based sample of 1094 participants (550 women) 50-65 years old as part of the Swedish CArdioPulmonary bioImage Study (SCAPIS) pilot. Standardized supine rest allowing heart rate stabilization and adaptation of ventricular repolarization preceded a recording period lasting �5 minutes. In the Frank VCG a recording segment during steady-state conditions and with good signal quality was selected based on QRST variability. In this segment a representative signal-averaged QRST complex from cardiac cycles during 10s was selected. Twenty-eight morphological parameters were calculated including both conventional conduction intervals and VCG-derived parameters. The reliability and reproducibility of these parameters were evaluated when using completely automatic and automatic but manually edited annotation points.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.