Double-clad fibers (DCF) have many advantages in fibered confocal microscopes as they allow for coherent illumination through their core and partially coherent detection through their inner cladding. We report a double-clad fiber coupler (DCFC) made from small inner cladding DCF that preserves optical sectioning in confocal microscopy while increasing collection efficiency and reducing coherent effects. Due to the small inner cladding, previously demonstrated fabrication methods could not be translated to this coupler's fabrication. To make such a coupler possible, we introduce in this article three new design concepts. The resulting DCFC fabricated using two custom fibers and a modified fusion-tapering technique achieves high multimodal extraction (≥70 %) and high single mode transmission (≥80 %). Its application to reflectance confocal microscopy showed a 30-fold increase in detected signal intensity, a 4-fold speckle contrast reduction with a penalty in axial resolution of a factor 2. This coupler paves the way towards more efficient confocal microscopes for clinical applications.
Manufacturing processes can be monitored for anomalies and failures just like machines, in condition monitoring and prognostic and health management. This research takes inspiration from condition monitoring and prognostic and health management techniques to develop a method for part production process monitoring. The contribution brought by this paper is an automated technique for process monitoring that works with low sampling rates of 1/3Hz, a limitation that comes from using data provided by an industrial partner and acquired from industrial manufacturing processes. The technique uses kernel density estimation functions on machine tools spindle load historical time signals for distribution estimation. It then uses this estimation to monitor the manufacturing processes for anomalies in real time. A modified version was tested by our industrial partner on a titanium part manufacturing line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.