Organic photovoltaic (OPV) devices, made with semiconducting polymers, have recently attained a power conversion efficiency (PCE) over 14% in single junction cells and over 17% in tandem cells. These high performances, together with the suitability of the technology to inexpensive large-scale manufacture, over lightweight and flexible plastic substrates using roll-to-roll (R2R) processing, place the technology amongst the most promising for future harvesting of solar energy. Although OPVs using non-fullerene acceptors have recently outperformed their fullerene-based counterparts, the research in the development of new fullerenes and in the improvement of the bulk-heterojunction (BHJ) morphology and device efficiency of polymer:fullerene solar cells remains very active. In this review article, the most relevant research works performed over the last 3 years, that is, since the year 2016 onwards, in the field of fullerene-based polymer solar cells based on the copolymers PTB7, PTB7-Th (also known as PBDTTT-EFT) and PffBT4T-2OD, are presented and discussed. This review is primarily focused on studies that involve the improvement of the BHJ morphology, efficiency and stability of small active area devices (typically < 15 mm2), through the use of different processing strategies such as the use of different fullerene acceptors, different processing solvents and additives and different thermal treatments.
We demonstrate that the inclusion of a small amount of the co-solvent 1,8-diiodooctane in the preparation of a bulk-heterojunction photovoltaic device increases its power conversion efficiency by 20%, through a mechanism of transient plasticisation. We follow the removal of 1,8-diiodooctane directly after spin-coating using ellipsometry and ion beam analysis, while using small angle neutron scattering to characterise the morphological nanostructure evolution of the film. In PffBT4T-2OD/PC71BM devices, the power conversion efficiency increases from 7.2% to above 8.7% as a result of the coarsening of the phase domains. This coarsening process is assisted by thermal annealing and the slow evaporation of 1,8-diiodooctane, which we suggest, acts as a plasticiser to promote molecular mobility. Our results show that 1,8-diiodooctane can be completely removed from the film by a thermal annealing process at temperatures ≤100 °C and that there is an interplay between the evaporation rate of 1,8-diiodooctane and the rate of domain coarsening in the plasticized film which helps elucidate the mechanism by which additives improve device efficiency.
Organic photovoltaic (OPV) cells have recently undergone a rapid increase in power conversion efficiency (PCE) under AM1.5G conditions, as certified by the National Renewable Energy Laboratory (NREL), which have jumped from 11.5% in October 2017 to 18.2% in December 2020. However, the NREL certified PCE of large area OPV modules is still lagging far behind (11.7% in July 2020). Additionally, there has been a rapidly growing interest in the use of OPVs for dim light indoor applications, with reported PCE of some large area (≥1 cm2) devices, under 1000 lux, well above 20%. The transition of OPV from the lab to the market requires the development of effective manufacturing processes that can scale‐up laboratory‐scale devices into large area devices, without sacrificing performance and simultaneously minimizing associated manufacturing costs. This review article focuses on four important challenges that OPV technology has to face to achieve a reliable lab‐to‐fab transfer, namely: i) The upscaling of indium‐tin‐oxide (ITO)‐based single cells and the interconnection of single cells into large area modules; ii) the development of alternatives to vacuum processing; iii) the development of alternatives to ITO‐based substrates; and iv) strategies for improving the lifetime of large area OPV devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.