Abstract-Phylogenetic networks are a generalization of phylogenetic trees that allow for the representation of nontreelike evolutionary events, like recombination, hybridization, or lateral gene transfer. While much progress has been made to find practical algorithms for reconstructing a phylogenetic network from a set of sequences, all attempts to endorse a class of phylogenetic networks (strictly extending the class of phylogenetic trees) with a well-founded distance measure have, to the best of our knowledge and with the only exception of the bipartition distance on regular networks, failed so far. In this paper, we present and study a new meaningful class of phylogenetic networks, called tree-child phylogenetic networks, and we provide an injective representation of these networks as multisets of vectors of natural numbers, their path multiplicity vectors. We then use this representation to define a distance on this class that extends the well-known Robinson-Foulds distance for phylogenetic trees and to give an alignment method for pairs of networks in this class. Simple polynomial algorithms for reconstructing a tree-child phylogenetic network from its path multiplicity vectors, for computing the distance between two tree-child phylogenetic networks and for aligning a pair of tree-child phylogenetic networks, are provided. They have been implemented as a Perl package and a Java applet, which can be found at
Motivation: The presence of reticulate evolutionary events in phylogenies turn phylogenetic trees into phylogenetic networks. These events imply in particular that there may exist multiple evolutionary paths from a non-extant species to an extant one, and this multiplicity makes the comparison of phylogenetic networks much more difficult than the comparison of phylogenetic trees. In fact, all attempts to define a sound distance measure on the class of all phylogenetic networks have failed so far. Thus, the only practical solutions have been either the use of rough estimates of similarity (based on comparison of the trees embedded in the networks), or narrowing the class of phylogenetic networks to a certain class where such a distance is known and can be efficiently computed. The first approach has the problem that one may identify two networks as equivalent, when they are not; the second one has the drawback that there may not exist algorithms to reconstruct such networks from biological sequences.Results: We present in this article a distance measure on the class of semi-binary tree-sibling time consistent phylogenetic networks, which generalize tree-child time consistent phylogenetic networks, and thus also galled-trees. The practical interest of this distance measure is 2-fold: it can be computed in polynomial time by means of simple algorithms, and there also exist polynomial-time algorithms for reconstructing networks of this class from DNA sequence data.Availability: The Perl package , included in the BioPerl bundle, implements many algorithms on phylogenetic networks, including the computation of the distance presented in this article.Contact: gabriel.cardona@uib.esSupplementary information: Some counterexamples, proofs of the results not included in this article, and some computational experiments are available at Bioinformatics online.
Let M 2 be the moduli space that classifies genus 2 curves. If a curve C is defined over a field k, the corresponding moduli point P = [C] ∈ M 2 is defined over k. In [7], Mestre solves the converse problem for curves with Aut(C) ≃ C 2 . Given a moduli point defined over k, Mestre finds an obstruction to the existence of a corresponding curve defined over k, that is an element in Br 2 (k) not always trivial. In this paper we prove that for all the other possibilities of Aut(C), every moduli point defined over k is represented by a curve defined over k. We also give an explicit construction of such a curve in terms of the coordinates of the moduli point.
BackgroundPhylogenetic tree comparison metrics are an important tool in the study of evolution, and hence the definition of such metrics is an interesting problem in phylogenetics. In a paper in Taxon fifty years ago, Sokal and Rohlf proposed to measure quantitatively the difference between a pair of phylogenetic trees by first encoding them by means of their half-matrices of cophenetic values, and then comparing these matrices. This idea has been used several times since then to define dissimilarity measures between phylogenetic trees but, to our knowledge, no proper metric on weighted phylogenetic trees with nested taxa based on this idea has been formally defined and studied yet. Actually, the cophenetic values of pairs of different taxa alone are not enough to single out phylogenetic trees with weighted arcs or nested taxa.ResultsFor every (rooted) phylogenetic tree T, let its cophenetic vectorφ(T) consist of all pairs of cophenetic values between pairs of taxa in T and all depths of taxa in T. It turns out that these cophenetic vectors single out weighted phylogenetic trees with nested taxa. We then define a family of cophenetic metrics dφ,p by comparing these cophenetic vectors by means of Lp norms, and we study, either analytically or numerically, some of their basic properties: neighbors, diameter, distribution, and their rank correlation with each other and with other metrics.ConclusionsThe cophenetic metrics can be safely used on weighted phylogenetic trees with nested taxa and no restriction on degrees, and they can be computed in O(n2) time, where n stands for the number of taxa. The metrics dφ,1 and dφ,2 have positive skewed distributions, and they show a low rank correlation with the Robinson-Foulds metric and the nodal metrics, and a very high correlation with each other and with the splitted nodal metrics. The diameter of dφ,p, for p⩾1 , is in O(n(p+2)/p), and thus for low p they are more discriminative, having a wider range of values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.