Equivalence classes are defined according to the substitutability, or functional similarity, of the stimuli within a stimulus class. Several studies have demonstrated that the degree of functional similarity between stimuli in a class is dependent, in part, upon the number of nodes (intervening stimuli) between the stimuli. Higher nodal number is related to lower functional similarity. This effect is referred to as “nodality.” There are three key factors that have not been simultaneously controlled for in the relevant studies: priming effects, reinforcement during training, and multiple stimulus functions of stimuli (sample, comparison, or both). In the present experiment, controlling for these factors, two 6‐member, 4‐node equivalence classes were established, and a within‐class preference assessment was used to evaluate nodality. Of 12 participants, five achieved criterion accuracy (90%) during testing. These participants demonstrated nodality, showing preference for stimuli that were nodally proximal to a sample in the preference test. When distal comparisons were chosen, participants took longer, on average, to make the selection compared to selections of proximal stimuli. These findings are consistent with earlier studies demonstrating nodality, which suggests that nodality is a robust phenomenon and not an artifact of the factors that were controlled for in the present study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.