Recently, there have been advances in using unsupervised learning methods for Acoustic Anomaly Detection (AAD). In this paper, we propose an improved version of two deep AutoEncoders (AE) for unsupervised AAD for six types of working machines, namely Dense and Convolutional AEs. A large set of computational experiments was held, showing that the two proposed deep autoencoders, when combined with a mel-spectrogram sound preprocessing, are quite competitive and outperform a recently proposed AE baseline. Overall, a high-quality class discrimination level was achieved, ranging from 72% to 92%.
The growing usage of digital microphones has generated an increased interest in the topic of Acoustic Anomaly Detection (AAD). Indeed, there are several real-world AAD application domains, including working machines and in-vehicle intelligence (the main target of this research project). This paper introduces three deep AutoEncoders (AE) for unsupervised AAD tasks, namely a Dense AE, a Convolutional Neural Network (CNN) AE and Long Short-Term Memory Autoencoder (LSTM) AE. To tune the deep learning architectures, development data was adopted from public domain audio datasets related with working machines. A large set of computational experiments was held, showing that the three proposed deep autoencoders, when combined with a melspectrogram sound preprocessing, are quite competitive and outperform a recently proposed AE baseline. Next, on a second experimental stage, aiming to address the final in-vehicle passenger safety goal, the three AEs were adapted to learn from in-vehicle normal audio, assuming three realistic scenarios that were generated by a Deep Autoencoders for Acoustic Anomaly Detection synthetic audio mixture tool. In general, a high quality AAD discrimination was obtained: working machine data -72% to 91%; and in-vehicle audio -78% to 81%. In conjunction with an automotive company, an in-vehicle AAD intelligent system prototype was further developed, aiming to test a selected model (LSTM AE) during a pilot demonstration event that targeted the cough anomaly. Interesting results were obtained, with the AAD system presenting a high cough classification accuracy (e.g., 100% for front seat locations).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.