Early detection of frailty signs is important for the senior population that prefers to keep living in their homes instead of moving to a nursing home. Sleep quality is a good predictor for frailty monitoring. Thus we are interested in tracking sleep parameters like sleep wake patterns to predict and detect potential sleep disturbances of the monitored senior residents. We use an unsupervised inference method based on actigraphy data generated by ambient motion sensors scattered around the senior's apartment. This enables our monitoring solution to be flexible and robust to the different types of housings it can equip while still attaining accuracy of 0.94 for sleep period estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.