Biomass gasification process is simulated in order to determine the influence of the operating parameters on the quality of the gas produced. Furthermore, the hydrogen required to enrich the syngas is also established. The modeling and simulation showed that the gas obtained by gasification at atmospheric pressure is mainly composed of H2 and CO; however, the molar ratio H2/CO is not favorable for synthesizing fuels such as methanol. This shows the need to enrich the syngas with additional hydrogen. For the case study developed, for each 100 kg / hr of biomass waste gasified, the amount of additional hydrogen required ranges between 2 to 6 kg / hr in order to obtain a molar ratio H2/CO close to 2. Using palm fiber, the amount of hydrogen required would be 4 kg / hr. This additional hydrogen could be derived from solar energy using thermoelectric modules with an effective area of solar radiation close to 400 m2 per kg of biomass. The simulation was performed using ASPEN PLUS®.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.