Data from the World Health Organization indicate that billion cases of visual impairment could be avoided, mainly with regular examinations. However, the absence of specialists in basic health units has resulted in a lack of accurate diagnosis of systemic or asymptomatic eye diseases, increasing the cases of blindness. In this context, the present paper proposes an ensemble of convolutional neural networks, which were submitted to a transfer learning process by using 38,727 high-quality fundus images. Next, the ensemble was tested with 13,000 low-quality fundus images acquired by low-cost equipment. Thus, the proposed approach contributes to advance the state-of-the-art with a novel deep transfer learning strategy, which is more suitable and feasible to be applied by emerging and under-developing countries. From lowquality images, the proposed approach was able to reach accuracies of 87.4%, 90.8%, 87.5%, 79.1% to classify cataract, diabetic retinopathy, excavation and blood vessels, respectively.INDEX TERMS Convolutional neural network; deep learning; eye-related conditions; fundus images; transfer learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.