The shortcomings of conventional access control systems for high‐security environments have led to the concert of continuous authentication. Contrary to traditional verification, in which users are authenticated only once at the start of their session, continuous authentication systems regularly check users' identities to prevent hijackings. The challenges in this area involve balancing the security of protected assets by quickly detecting intruders with the system usability for genuine users. Biometric recognition plays a major role within this context, as it is the main way to assure that users are who they claim to be. A comparative analysis of the latest works revealed different aspects of this problem. First, some biometrics traits among those applied for continuous authentication are more suitable for this task than others. Second, systems combining multiple traits have advantages over those relying on a single one. Finally, many works fail to report proper evaluation metrics. With this in mind, we were able to identify new opportunities for researchers in the field. We highlight the potential for mining new datasets on the internet, which would benefit validation and benchmarking, and how recent deep learning techniques could address some of the open challenges in the area. This article is categorized under: Technologies > Prediction Technologies > Machine Learning Application Areas > Science and Technology
We propose a method that can perform one-class classification given only a small number of examples from the target class and none from the others. We formulate the learning of meaningful features for one-class classification as a meta-learning problem in which the meta-training stage repeatedly simulates one-class classification, using the classification loss of the chosen algorithm to learn a feature representation. To learn these representations, we require only multiclass data from similar tasks. We show how the Support Vector Data Description method can be used with our method, and also propose a simpler variant based on Prototypical Networks that obtains comparable performance, indicating that learning feature representations directly from data may be more important than which one-class algorithm we choose. We validate our approach by adapting few-shot classification datasets to the few-shot one-class classification scenario, obtaining similar results to the state-of-the-art of traditional one-class classification, and that improves upon that of one-class classification baselines employed in the few-shot setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.