The development and utilization of new energy sources has been extensively studied in the world. Here, we report the development of flexible self-supported metal-free electrodes based on non-oxidized graphene multilayer (MLG) paper containing the lead iodide nanoparticles (PbI 2-NPs). The PbI 2-NPs was obtained and characterized by X-ray diffraction (XDR) and Raman spectroscopy. Supercapacitor containing the PbI 2-NPs in MLG electrodes was fabricated by a simple method and characterized using atomic force microscopy (AFM), cyclic voltammetry (CV) and galvanostatic charge-discharge techniques. The results show a flexible supercapacitor fashion reaching capacitance values of 154 F/g with high prospects in electronic area. Energy and power densities obtained for the pure MLG supercapacitor were 3.40 µWh cm-2 and 0.73 mW cm-2 , respectively. Regarding to PbI 2-NPs/MLG capacitor the energy and power density obtained were 3.50 Wh kg-1 and 1.10 kW kg-1. The results herein presented open the possibility to new energy storage devices using PbI 2-NPs and MLG flexible supercapacitor configuration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.