In the past three decades, researchers have noted the limitations of a problem-solving approach that overemphasizes algorithms and quantitation and neglects student misconceptions and an otherwise qualitative, conceptual understanding of chemical phenomena. Since then, studies and lessons designed to improve student understanding of chemistry has overwhelmingly targeted introductory level, high school and first-year college students. In this article, we present a model-based learning cycle approach with upper-level undergraduate and beginning graduate students that investigated their ability to model the adiabatic and isothermal compression/expansion of a gas in a syringe. We were interested to observe, given the extent of their previous chemistry coursework, how students struggled to connect macroscopic observations with particulate representations. Analysis of laboratory reports, reflective journal entries, and classroom discourse transcripts indicate the learning experience was efficacious in uncovering and addressing student conceptual challenges with using models appropriately to describe gas behaviour under the experimental conditions for this investigation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.