Summary AMPARs mediate the briefest synaptic currents in the brain by virtue of their rapid gating kinetics. However, at the mossy fiber-to-unipolar brush cell synapse in the cerebellum, AMPAR-mediated EPSCs last for hundreds of milliseconds, and it has been proposed that this time course reflects slow diffusion from a complex synaptic space. We show that upon release of glutamate, synaptic AMPARs were desensitized by transmitter by >90%. As glutamate levels subsequently fell, recovery of transmission occurred due to the presence of the AMPAR accessory protein stargazin that enhances the AMPAR response to low levels of transmitter. This gradual increase in receptor activity following desensitization accounted for the majority of synaptic transmission at this synapse. Moreover, the amplitude, duration and shape of the synaptic response was tightly controlled by plasma membrane glutamate transporters, indicating that clearance of synaptic glutamate during the slow EPSC is dictated by an uptake process.
Auditory processing depends upon inhibitory signaling by interneurons, even at its earliest stages in the ventral cochlear nucleus (VCN). Remarkably, to date only a single subtype of inhibitory neuron has been documented in the VCN, a projection neuron termed the D-stellate cell. With the use of a transgenic mouse line, optical clearing and imaging techniques, combined with electrophysiological tools, we revealed a population of glycinergic cells in the VCN distinct from the D-stellate cell. These multipolar glycinergic cells were smaller in soma size and dendritic area, but over 10-fold more numerous than D-stellate cells. They were activated by AN and T-stellate cells, and made local inhibitory synaptic contacts on principal cells of the VCN. Given their abundance, combined with their narrow dendritic fields and axonal projections, it is likely that these neurons, here termed L-stellate cells, play a significant role in frequency-specific processing of acoustic signals.
Activity in each brain region is shaped by the convergence of ascending and descending axonal pathways, and the balance and characteristics of these determine neural output. The medial olivocochlear (MOC) efferent system is part of a reflex arc that critically controls auditory sensitivity. Multiple central pathways contact MOC neurons, raising the question of how a reflex arc could be engaged by diverse inputs. We examined functional properties of synapses onto brainstem MOC neurons from ascending (ventral cochlear nucleus, VCN), and descending (inferior colliculus, IC) sources in mice using an optogenetic approach. We found that these pathways exhibited opposing forms of short-term plasticity, with VCN input showing depression and IC input showing marked facilitation. By using a conductance clamp approach, we found that combinations of facilitating and depressing inputs enabled firing of MOC neurons over a surprisingly wide dynamic range, suggesting an essential role for descending signaling to a brainstem nucleus.
Non-technical summary Retinal ganglion cells represent a population of neurons that relay information from the retina to the brain. During retinal light responses, the spiking activity of retinal ganglion cells is shaped in part by NMDA receptors, which require a coagonist for activation. There is debate over if glycine or D-serine serves as the endogenous coagonist to retinal ganglion cell NMDA receptors. To address this question, we used a mutant mouse lacking functional serine racemase, the D-serine-synthesizing enzyme. In this study we show that D-serine is required to activate retinal ganglion cell NMDA receptors during light stimulation. Mice lacking serine racemase also appeared to have alterations in the relative contribution of NMDA and AMPA receptors to light responses. Interestingly, behavioural tests showed that mice lacking serine racemase had no apparent visual deficits. Collectively, these findings raise interesting questions about the role of D-serine in shaping excitatory synapses and in visual processing. AbstractGlycine and/or D-serine are obligatory coagonists of the N -methyl-D-aspartate receptor (NMDAR). Serine racemase, the D-serine-synthesizing enzyme, is expressed by astrocytes and Müller cells of the retina, but little is known about its role in retinal signalling. In this study, we utilize a serine racemase knockout (SRKO) mouse to explore the contribution of D-serine to inner-retinal function. Retinal tissue levels of D-serine in SRKO mice are reduced by 85%. Whole-cell recordings from SRKO retinal ganglion cells showed markedly reduced coagonist occupancy of NMDARs and consequently a dramatic reduction in the NMDAR component of light-evoked responses. NMDAR currents in SRKOs could be rescued by applying exogenous coagonist, but SRKO ganglion cells still displayed lower NMDA/AMPA receptor ratios than wild-type (WT) controls when the coagonist site was saturated. Despite having abnormalities in synaptic glutamatergic transmission, SRKO mice displayed no obvious signs of visual impairment in behavioural testing. These findings raise interesting questions about the role of D-serine in inner-retinal function and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.