Harston et al. establish proof of principle for clinical use of pH-weighted MRI in patients with acute ischaemic stroke. Detailed tissue-level analysis reveals that cerebral intracellular pH, a marker of metabolic stress, is associated with eventual tissue outcome, and complements established imaging modalities.
Intestinal Ag exposure during neonatal life influences appropriate adult immune responses. To define the mechanisms shaping the T cell repertoire during this period, we examined T cell differentiation and receptor diversity in the intestine of human infants. Developmental phenotypes of intraepithelial and lamina propria intestinal T cells from infants aged 1 day to 2 years were assessed ex vivo by flow cytometry and in situ by triple-fluorescent immunohistochemistry. Gene recombination-specific enzymes were assessed by PCR. TCR β-chain V region gene diversity was determined by sequencing. Several different early lineage T cell populations were present neonatally: CD3+4−8− T cells were present at birth and numbers decreased during the neonatal period; CD3+4+8+ T cells were present in low numbers throughout infancy; and CD3+4+8− or CD3+4−8+ T cells increased with age. Very early lineage T cells, CD3−2−7+ and CD3−2+7+, were present neonatally, but were essentially absent at 1 year. Most lamina propria T cells differentiated rapidly after birth, but maturation of intraepithelial T cells took place over 1 year. Intestinal samples from infants less than 6 mo old contained transcripts of T early α and TdT, and 15 of 19 infant samples contained mRNA for RAG-1, some coexpressing RAG-2. TCR β-chain repertoires were polyclonal in infants. Immature T cells, pre-T cells, and genes involved in T cell recombination were found in the intestine during infancy. T cell differentiation occurs within the neonatal human intestine, and the TCR repertoire of these developing immature T cells is likely to be influenced by luminal Ags. Thus, mucosal T cell responsiveness to environmental Ag is shaped in situ during early life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.