The use and disposal of face masks, gloves, face shields, and other types of personal protective equipment (PPE) have increased dramatically due to the ongoing COVID-19 pandemic. Many governments enforce the use of PPE as an efficient and inexpensive way to reduce the transmission of the virus. However, this may pose a new challenge to solid waste management and exacerbate plastic pollution. The aim of the present study was to report the occurrence and distribution of COVID-19-associated PPE along the coast of the overpopulated city of Lima, Peru, and determine the influence of the activities carried out in each study site. In general terms, 138 PPE items were found in 11 beaches during 12 sampling weeks. The density was in the range of 0 to 7.44 × 10
-4
PPE m
-2
. Microplastic release, colonization of invasive species, and entanglement or ingestion by apex predators are some of the potential threats identified. Recreational beaches were the most polluted sites, followed by surfing, and fishing sites. This may be because recreational beaches are many times overcrowded by beachgoers. Additionally, most of the PPE was found to be discarded by beachgoers rather than washed ashore. The lack of environmental awareness, education, and coastal mismanagement may pose a threat to the marine environment through marine litter and plastic pollution. Significant efforts are required to shift towards a sustainable solid waste management. Novel alternatives involve redesigning masks based on degradable plastics and recycling PPE by obtaining liquid fuels through pyrolysis.
Microplastic presence in seafood and foodstuff have been documented globally in recent studies. Consequently, human exposure to microplastics through the ingestion of contaminated food is inevitable and pose a risk to food security and human health. In this review, microplastics and related xenobiotics are defined, global evidence of microplastic pollution in seafood is reviewed, the impacts to commercial marine species and food security are discussed, and the current knowledge of its direct effects on human health is reviewed. In addition, limited information regarding food security and scientific gaps are identified. Although microplastics in the marine environment and its effects on marine organisms have been well documented, more research is needed to completely understand the implications of microplastics over food security and human health. Further research must focus on monitoring and eliminating microplastics along the food supply chain and determining the extent to which food security is affected by microplastic pollution.
Since the COVID-19 outbreak was declared as a global health emergency, the use of multiple types of plastic-based PPEs as a measure to reduce the infection increased tremendously. Recent evidence suggests that the overuse of PPEs during the COVID-19 pandemic is worsening plastic pollution in the marine environment. In this short focus, we discussed the potential sources, fate, and effects of PPE plastic to the marine environment and proposed five key research needs, involving (1) the occurrence and abundance of PPEs, (2) the sources, fate, and drivers of PPEs, (3) PPEs as a source of microplastics, (4) PPEs as a vector of invasive species and pathogens, and (5) PPEs as a source and vector of chemical pollutants in the marine environment. We suggest that addressing these knowledge gaps will lay the groundwork for improved COVID-19-associated waste management and legislation to prevent marine plastic pollution to continue exacerbating.
The ongoing COVID-19 pandemic has driven massive consumption of personal protective equipment (PPE) worldwide. Single-use face masks are one of the most used PPE to prevent the transmission of the virus. However, mismanagement of such materials threatens the environment with a new form of plastic pollution. Researchers argue that it is necessary to develop and implement innovative ways to manage and recycle PPE in order to reduce their impacts on the environment. In the present work, we have reviewed and discussed the recent development of sustainable face mask alternatives and recycling and repurposing routes under the COVID-19 pandemic context. Moreover, we have conducted estimations of the daily face mask waste generation in Peru, a developing country struggling with a poor solid waste management framework and infrastructure. Unlike previous studies, our equation incorporates the “economically active population” variable in order to provide more precise estimations, while evaluating single-use and reusable scenarios. The scenarios of incorporating reusable face masks significantly reduced the amount of solid waste generated in Peru. In situ evidence shows that face masks are polluting the streets and beaches of Peru, probably driven by mismanagement and poor environmental awareness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.