Modern aero engine components are subjected to extreme conditions were high wear rate, excessive fatigue cycles, and severe thermal attack are inevitable. These aggressive conditions reduce the service life of components. Its generic effect is magnified in the light of understanding the fact that aero engine parts are highly sensitive to functional and dimensional precision therefore, repair and replacement are great factors that promote downtime during operation. Hard thermal barrier coatings have been used in recent times due to their optimized properties for maximum load bearing proficiency with high temperature capability to meet performance and durability required. Nevertheless, less emphasis is being given to the coating-substrate interaction. Functionally graded structures have better synergy and flexibility in composition than coatings, giving rise to controlled microstructure and improved properties in withstanding acute state of affairs. Such materials can be fabricated using Laser Engineered Net Shaping LENS™ , a laser-based additive manufacturing technique. LENS™ offers a great deal in rapid prototyping, repair, and fabrication of three-dimensional dense structures with superior properties in comparison with traditionally fabricated structures. The manufacture of aero engine components with functionally graded materials, using LENS™, can absolutely mitigate the nuisance of buy-to-fly ratio, lost time in repair and maintenance, and maximize controlled dimension and multi-geometric properties, enhanced wear resistance, and high temperature strength. This review presents an extensive contribution in terms of insightful understanding of processing parameters and their interactions on fabrication of functionally graded stainless steel, which definitely influence the final product quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.