A study is presented of the molecular dynamics and of the viscosity in pure [Aliquat][Cl] ionic liquid and in a mixture of [Aliquat][Cl] with 1% (v/v) of [Aliquat][FeCl4]. The (1)H spin-lattice relaxation rate, R1, was measured by NMR relaxometry between 8 and 300 MHz. In addition, the translation self-diffusion, D, was measured by pulse field gradient NMR. The ILs' viscosity was measured as a function of an applied magnetic field, B, and it was found that the IL mixture's viscosity decreased with increasing B, whereas the [Aliquat][Cl] viscosity is independent of B. All experimental results were analyzed taking into account the viscosity's magnetic field dependence, assuming a modified Stokes-Einstein diffusion/viscosity relation. The main difference between the relaxation mechanisms responsible for R1 in the two IL systems is related to the additional paramagnetic relaxation contribution associated with the (1)H spins-[FeCl4] paramagnetic moments' interactions. Cross-relaxation cusps in the R1 dispersion, associated with (35)Cl and (1)H nuclear spins in the IL systems, were detected. The R1 model considered was successfully fitted to the experimental results, and it was possible to estimate the value of D at zero field in the case of the IL mixture which was consistent with the values of D measured at 7 and 14.1 T and with the magnetic field dependence estimated from the viscosity measurements. It was observed that a small concentration of [Aliquat][FeCl4] in the [Aliquat][Cl] was enough to produce a "superparamagnetic"-like effect and to change the IL mixture's molecular dynamics and viscosity and to allow for their control with an external magnetic field.
Deuterium NMR is used to examine the molecular order exhibited by an organosiloxane tetrapode giving the first experimental evidence, using a bulk sample, for the existence of a biaxial nematic phase in this type of compounds. The temperature dependence of the averaged quadrupolar coupling constant and asymmetry parameter was determined in the compound's nematic phase. Two distinct regimes could be identified, one with a vanishing asymmetry parameter corresponding to a uniaxial nematic phase and another with a significant temperature dependent asymmetry parameter, corresponding to a biaxial nematic phase. The high values obtained for the asymmetry parameter at the lower end of the nematic range are well above experimental error and constitute a definite proof of the biaxial nature of the nematic phase exhibited by the studied compound for those temperatures.
The work aims to prove the complexation of two models drugs (ibuprofen, IB and indomethacin, IN) by beta-cyclodextrin (βCD), the effect of the water in such process, and the comparison of their complexation yields. Two methods were considered: kneading of a binary mixture of the drug:βCD and inclusion of either IB or IN in aqueous solutions of βCD. In the latter method the water was removed by air stream, spray-drying and freeze-drying. To prove the formation of complexes in final products optical microscopy, UV spectroscopy, IR spectroscopy, DSC, X-Ray and NMR were considered. Each powder was added to an acidic solution (pH = 2) to quantify the concentration of the drug inside βCD cavity. Others media (pH = 5 and 7) were used to prove the existence of drug not complexed in each powder as the drugs solubility increases with the pH. It was observed that complexation occurred in all powders, and that the fraction of drug inside the βCD did not depend neither on the method of complexation nor on the processes of drying considered.
A novel method to prepare silica nano-sized particles incorporating polyoxometalates was developed leading to a new efficient heterogeneous oxidative catalyst. Zinc-substituted polyoxotungstate [PW11Zn(H2O)O39](5-) (PW11Zn) was encapsulated into silica nanoparticles using a cross-linked organic-inorganic core, performed through successive spontaneous reactions in water. The potassium salt of PW11Zn and the composite formed, PW11Zn-APTES@SiO2, were characterized by a myriad of solid-state methods such as FT-IR, FT-Raman, (31)P and (13)C CP/MAS solid-state NMR, elemental analysis and SEM-EDS, confirming the integrity of the PW11Zn structure immobilized in the silica nanoparticles. The new composite has shown to be a versatile catalyst for the oxidation of olefins and also to catalyze the desulfurization of a model oil using H2O2 as the oxidant and acetonitrile as the solvent. The novel composite material was capable of being recycled without significant loss of activity and maintaining its structural stability for consecutive desulfurization and olefin oxidative cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.