Lactacystin is a Streptomyces metabolite that inhibits cell cycle progression and induces neurite outgrowth in a murine neuroblastoma cell line. Tritium-labeled lactacystin was used to identify the 20S proteasome as its specific cellular target. Three distinct peptidase activities of this enzyme complex (trypsin-like, chymotrypsin-like, and peptidylglutamyl-peptide hydrolyzing activities) were inhibited by lactacystin, the first two irreversibly and all at different rates. None of five other proteases were inhibited, and the ability of lactacystin analogs to inhibit cell cycle progression and induce neurite outgrowth correlated with their ability to inhibit the proteasome. Lactacystin appears to modify covalently the highly conserved amino-terminal threonine of the mammalian proteasome subunit X (also called MB1), a close homolog of the LMP7 proteasome subunit encoded by the major histocompatibility complex. This threonine residue may therefore have a catalytic role, and subunit X/MB1 may be a core component of an amino-terminal-threonine protease activity of the proteasome.
The mechanism by which epithelial, endothelial and other strongly cell-cell adhesive cells migrate collectively as continuous sheets is not clear, even though this process is crucial for embryonic development and tissue repair in virtually all multicellular animals. Wound closure in Madin-Darby canine kidney (MDCK) epithelial cell monolayers involves Rac GTPase-dependent migration of cells both at and behind the wound edge. We report here for the first time that cells behind the margin of wounded MDCK cell monolayers, even hundreds of microns from the edge, extend `cryptic' lamellipodia against the substratum beneath cells in front of them, toward the wound, as determined by confocal, two-photon and transmission electron microscopy. These so-called submarginal cells nevertheless strictly maintain their more apical cell-cell contacts when they migrate as part of a coherent cell sheet, hiding their basal protrusions from conventional microscopy. The submarginal protrusions display the hallmarks of traditional lamellipodia based on morphology and dynamics. Cells behind the margin therefore actively crawl, instead of just moving passively when cells at the margin pull on them. The rate of migration is inversely proportional to the distance from the margin, and cells move co-ordinately, yet still in part autonomously, toward the wound area. We also clarify the ancillary role played by nonprotrusive contractile actin bundles that assemble in a Rho GTPase-dependent manner at the margin after wounding. In addition, some cell proliferation occurs at a delay after wounding but does not contribute to closure. Instead, it apparently serves to replace damaged cells so that intact spread cells can revert to their normal cuboidal morphology and the original cell density of the unbroken sheet can be restored.
Wounds in MDCK cell sheets do not close by purse-string contraction but by a crawling behavior involving Rac, phosphoinositides and active movement of multiple rows of cells. This finding suggests a new distributed mode of signaling and movement that, nevertheless, resembles individual cell motility. Although Rho and Cdc42 activities are not required for closure, they have a role in determining the regularity of closure.
The antibiotic lactacystin was reported to covalently modify -subunit X of the mammalian 20 S proteasome and inhibit several of its peptidase activities. However, we demonstrate that [ 3 H]lactacystin treatment modifies all the proteasome's catalytic -subunits. Lactacystin and its more potent derivative -lactone irreversibly inhibit protein breakdown and the chymotryptic, tryptic, and peptidylglutamyl activities of purified 20 S and 26 S particles, although at different rates. Exposure to these agents for 1 to 2 h reduced the degradation of short-and long-lived proteins in four different mammalian cell lines. Unlike peptide aldehyde inhibitors, lactacystin and the -lactone do not inhibit lysosomal degradation of an endocytosed protein. These agents block class I antigen presentation of a model protein, ovalbumin (synthesized endogenously or loaded exogenously), but do not affect presentation of the peptide epitope SIINFEKL, which does not require proteolysis for presentation. Generation of most peptides required for formation of stable class I heterodimers is also inhibited. Because these agents inhibited protein breakdown and antigen presentation similarly in interferon-␥-treated cells (where proteasomes contain LMP2 and LMP7 subunits in place of X and Y), all -subunits must be affected similarly. These findings confirm our prior conclusions that proteasomes catalyze the bulk of protein breakdown in mammalian cells and generate the majority of class I-bound epitopes for immune recognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.