La biomasa es uno de los materiales más adecuados como combustible alternativo, pero por sus características de humedad, exceso de contenido de oxígeno y bajo poder calorífico, requiere ser sometida a procesos de pretratamiento. La pele-tización permite acondicionar la biomasa para su utilización directamente en procesos térmicos. El sector ladrillero tiene una gran demanda energética para sus procesos de secado y cocción y el uso de combustibles a partir de biomasa permite obtener reducciones importantes en emisiones atmosféricas. El estudio piloto comparó el desempeño energético y ambiental del uso de combustibles a partir de dos tipos de biomasas peletizadas —residuos de podas de césped, arbustos y árboles de la ciudad y residuos de producción de muebles y aglomerados, aserrín—. La biomasa con mejor desempeño fue el aserrín, debido a su menor consumo energético en el proceso de pretratamiento, aspecto que arroja una mayor productividad en su uso. Adicionalmente, se observó una reducción en los costos de suministro de combustible entre un 7 % y 10 %, sustituyendo un 20 % del carbón utilizado en el proceso.
The conversion of biomass to olefin by employing gasification has recently gained the attention of the petrochemical sector, and syngas composition is a keystone during the evaluation of process design. Process simulation software is a preferred evaluation tool that employs stoichiometric and kinetic approaches. Despite the available literature, the estimation errors of these simulation methods have scarcely been contrasted. This study compares the errors of stoichiometric and kinetic models by simulating a downdraft steam gasifier in PRO/II. The quantitative examination identifies the model that best predicts the composition of products for the gasification of Japanese wood waste. The simulation adopts reaction mechanisms, flowsheet topology, reactions parameters, and component properties reported in the literature. The results of previous studies are used to validate the models in a comparison of the syngas composition and yield of products. The models are used to reproduce gasification at temperatures of 600∼900 °C and steam-to-biomass mass ratios of 0∼4. Both models reproduce experimental results more accurately for changes in the steam-to-biomass mass ratio than for temperature variations. The kinetic model is more accurate for predicting composition and yields, having global errors of 3.91%-mol/mol and 8.16%-g/gBM, respectively, whereas the simple stoichiometric model has an error of 7.96%-mol/mol and 16.21%-g/gBM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.