Accumulating evidence highlights the potential role of long non-coding RNAs (lncRNAs) as biomarkers and therapeutic targets in solid tumors. However, the role of lncRNA expression in human breast cancer biology, prognosis and molecular classification remains unknown. Herein, we established the lncRNA profile of 658 infiltrating ductal carcinomas of the breast from The Cancer Genome Atlas project. We found lncRNA expression to correlate with the gene expression and chromatin landscape of human mammary epithelial cells (non-transformed) and the breast cancer cell line MCF-7. Unsupervised consensus clustering of lncRNA revealed four subgroups that displayed different prognoses. Gene set enrichment analysis for cis- and trans-acting lncRNAs showed enrichment for breast cancer signatures driven by master regulators of breast carcinogenesis. Interestingly, the lncRNA HOTAIR was significantly overexpressed in the HER2-enriched subgroup, while the lncRNA HOTAIRM1 was significantly overexpressed in the basal-like subgroup. Estrogen receptor (ESR1) expression was associated with distinct lncRNA networks in lncRNA clusters III and IV. Importantly, almost two thirds of the lncRNAs were marked by enhancer chromatin modifications (i.e., H3K27ac), suggesting that expressed lncRNA in breast cancer drives carcinogenesis through increased activity of neighboring genes. In summary, our study depicts the first lncRNA subtype classification in breast cancer and provides the framework for future studies to assess the interplay between lncRNAs and the breast cancer epigenome.
Congenital melanocytic nevus (CMN) is a particular melanocytic in utero proliferation characterized by an increased risk of melanoma transformation during infancy or adulthood. NRAS and BRAF mutations have consistently been reported in CMN samples, but until recently results have been contradictory. We therefore studied a series of large and giant CMNs and compared them with small and medium CMNs using Sanger sequencing, pyrosequencing, high-resolution melting analysis, and mutation enrichment by an enhanced version of ice-COLD-PCR. Large-giant CMNs displayed NRAS mutations in 94.7% of cases (18/19). At that point, the role of additional mutations in CMN pathogenesis had to be investigated. We therefore performed exome sequencing on five specimens of large-giant nevi. The results showed that NRAS mutation was the sole recurrent somatic event found in such melanocytic proliferations. The genetic profile of small-medium CMNs was significantly different, with 70% of cases bearing NRAS mutations and 30% showing BRAF mutations. These findings strongly suggest that NRAS mutations are sufficient to drive melanocytic benign proliferations in utero.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.