Current powered prosthetic and orthotic devices are mostly based on rigid actuators, which exhibit some intrinsic limitations, such as the reduced number of degrees of freedom, high weight, and limited flexibility. As progress is made in the soft robotics field, artificial muscles arise as potential candidates to replace current rigid actuator technologies. Dielectric elastomer actuators (DEAs) are a very promising class of soft actuator and are attracting attention due to their high energy density, fast response, and high actuation strains, similar or even superior to natural muscles. Such remarkable properties can lead the DEAs to be the next generation of actuators for wearable robots, and overcome the limitations imposed by the rigid actuators currently used. This paper reviews the state of art of the applications of DEAs to prostheses, orthoses, and rehabilitation devices. We analyzed the main configurations that are suitable as artificial muscles for the above-mentioned applications and presented the basic model of a dielectric elastomer transducer. When compared to the properties of natural skeletal muscle, some of these configurations stand out. However, there are still some drawbacks that prevent the large-scale application of DEAs, for instance the high operating voltages, durability issues, and nonlinearities that make them difficult to control. We investigated recent advances in materials, control strategies and fabrication methods that tackle these drawbacks, and they indicate that dielectric elastomers are great candidates to be the next generation of actuators for bionic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.