The multilevel back-to-back cascaded H-bridge converter (CHB-B2B) presents a significantly reduced components per level in comparison to other classical back-to-back multilevel topologies. However, this advantage cannot be fulfilled because of the several internal short circuits presented in the CHB-B2B when a conventional PWM modulation is applied. To solve this issue, a powerful math tool known as graph theory emerges as a solution for defining the converter switching matrix to be used with an appropriate control strategy, such as the model-based predictive control (MPC). Therefore, this research paper proposes a MPC with the graph theory approach applied to CHB-B2B which capable of not only eliminating the short circuit stages, but also exploring all the switching states remaining without losing the converter controllability and power quality. To demonstrate the proposed strategy applicability, the MPC with graph theory approach is tested in four different types of SST configurations, input-parallel output-parallel (IPOP), input-parallel output series (IPOS), input-series output-parallel (ISOP), and input-series output series (ISOS), attending distribution grids with different voltage and power levels. Real-time experimental results obtained in a hardware-in-the-loop (HIL) platform demonstrate the proposed strategy’s effectiveness, such as DC-link voltages regulation, multilevel voltage synthesis, and currents with reduced harmonic content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.