Low phosphate (Pi) availability constrains plant development and seed production in both natural and agricultural ecosystems. When Pi is scarce, modifications of root system architecture (RSA) enhance the soil exploration ability of the plant and lead to an increase in Pi uptake. In Arabidopsis, an iron-dependent mechanism reprograms primary root growth in response to low Pi availability. This program is activated upon contact of the root tip with low-Pi media and induces premature cell differentiation and the arrest of mitotic activity in the root apical meristem, resulting in a short-root phenotype. However, the mechanisms that regulate the primary root response to Pi-limiting conditions remain largely unknown. Here we report on the isolation and characterization of two low-Pi insensitive mutants (lpi5 and lpi6), which have a long-root phenotype when grown in low-Pi media. Cellular, genomic, and transcriptomic analysis of low-Pi insensitive mutants revealed that the genes previously shown to underlie Arabidopsis Al tolerance via root malate exudation, known as SENSITIVE TO PROTON RHIZOTOXICITY (STOP1) and ALUMINUM ACTIVATED MALATE TRANSPORTER 1 (ALMT1), represent a critical checkpoint in the root developmental response to Pi starvation in Arabidopsis thaliana. Our results also show that exogenous malate can rescue the long-root phenotype of lpi5 and lpi6. Malate exudation is required for the accumulation of Fe in the apoplast of meristematic cells, triggering the differentiation of meristematic cells in response to Pi deprivation.
Low phosphate (Pi) availability constrains plant development and crop production in both natural and agricultural ecosystems. When Pi is scarce, modifications of root system architecture (RSA) enhance soil exploration ability and can lead to an increase in Pi uptake. In Arabidopsis, an iron-dependent determinate developmental program that induces premature differentiation in the root apical meristem (RAM) begins when the root tip contacts low Pi media, resulting in a short-root phenotype. However, the mechanisms that enable the regulation of root growth in response to Pi-limiting conditions remain largely unknown. Cellular, genomic and transcriptomic analysis of low-Pi insensitive mutants revealed that the malate-exudation related genes SENSITIVE TO PROTON RHIZOTOXICITY (STOP1) and ALUMINUM ACTIVATED MALATE TRANSPORTER 1 (ALMT1) represent a critical checkpoint in the root developmental response to Pi starvation in Arabidopsis thaliana.
Modular response analysis (MRA) is a widely used inference technique developed to uncover directions and strengths of connections in molecular networks under a steady-state condition by means of perturbation experiments. We devised several extensions of this methodology to search genomic data for new associations with a biological network inferred by MRA, to improve the predictive accuracy of MRA-inferred networks, and to estimate confidence intervals of MRA parameters from datasets with low numbers of replicates. The classical MRA computations and their extensions were implemented in a freely available R package called aiMeRA (https://github.com/bioinfo-ircm/aiMeRA/). We illustrated the application of our package by assessing the crosstalk between estrogen and retinoic acid receptors, two nuclear receptors implicated in several hormone-driven cancers, such as breast cancer. Based on new data generated for this study, our analysis revealed potential cross-inhibition mediated by the shared corepressors NRIP1 and LCoR. We designed aiMeRA for non-specialists and to allow biologists to perform their own analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.