Although forward osmosis (FO) membranes have shown great promise for many applications, there are few studies attempting to create a systematization of the testing conditions at a pilot scale for FO membrane modules. To address this issue, hollow fiber forward osmosis (HFFO) membrane modules with different performances (water flux and solute rejection) have been investigated at different operating conditions. Various draw and feed flow rates, draw solute types and concentrations, transmembrane pressures, temperatures, and operation modes have been studied using two model feed solutions—deionized water and artificial seawater. The significance of the operational conditions in the FO process was attributed to a dominant role of concentration polarization (CP) effects, where the selected draw solute and draw concentration had the biggest impact on membrane performance due to internal CP. Additionally, the rejection of the HFFO membranes using three model solutes (caffeine, niacin, and urea) were determined under both FO and reverse osmosis (RO) conditions with the same process recovery. FO rejections had an increase of 2% for caffeine, 19% for niacin, and 740% for urea compared to the RO rejections. Overall, this is the first extensive study of commercially available inside-out HFFO membrane modules.
The production of succinic acid from fermentation is a promising approach for obtaining building-block chemicals from renewable sources. However, the limited bio-succinic yield from fermentation and the complexity of purification has been making the bio-succinic acid production not competitive with petroleum-based succinic acid. Membrane electrolysis has been identified to be a promising technology in both production and separation stages of fermentation processes. This work focuses on identifying the key operational parameters affecting the performance of the electrolytic cell for separating succinic acid from fermentation broth through an anionic exchange membrane. Indeed, while efforts are mainly focused on studying the performance of an integrated fermenter-electrolytic cell system, a lack of understanding remains in how to tune the electrolytic cell and which main parameters are involved. The results show that a single electrolytic cell of operating volume 250 mL was able to extract up to 3 g L−1 h−1 of succinic acid. The production of OH− ions by water electrolysis can act as a buffer for the fermenter and it could be tuned as a function of the extraction rate. Furthermore, as the complexity of the solution in terms of the quantity and composition of the ions increased, the energy required for the separation process decreased.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.