BackgroundThe number of γH2AX foci per nucleus is an accepted measure of the number of DNA double-strand breaks in single cells. One of the experimental techniques for γH2AX detection in cultured cells is immunofluorescent labelling of γH2AX and nuclei followed by microscopy imaging and analysis.ResultsIn this study, we present the algorithm FoCo for reliable and robust automatic nuclear foci counting in single cell images. FoCo has the following advantages with respect to other software packages: i) the ability to reliably quantify even densely distributed foci, e.g., on images of cells subjected to radiation doses up to 10 Gy, ii) robustness of foci quantification in the sense of suppressing out-of-focus background signal, and iii) its simplicity. FoCo requires only 5 parameters that have to be adjusted by the user.ConclusionsFoCo is an open-source user-friendly software with GUI for individual foci counting, which is able to produce reliable and robust foci quantifications even for low signal/noise ratios and densely distributed foci.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-015-0816-5) contains supplementary material, which is available to authorized users.
Efficient double-strand break repair in eukaryotes requires manipulation of chromatin structure. ATP-dependent chromatin remodelling enzymes facilitate different DNA repair pathways, during different stages of the cell cycle and in varied chromatin environments. The contribution of remodelling factors to double-strand break repair within heterochromatin during G2 is unclear. The human HELLS protein is a Snf2-like chromatin remodeller family member and is mutated or misregulated in several cancers and some cases of ICF syndrome. HELLS has been implicated in the DNA damage response, but its mechanistic function in repair is not well understood. We discover that HELLS facilitates homologous recombination at two-ended breaks and contributes to repair within heterochromatic regions during G2. HELLS promotes initiation of HR by facilitating end-resection and accumulation of CtIP at IR-induced foci. We identify an interaction between HELLS and CtIP and establish that the ATPase domain of HELLS is required to promote DSB repair. This function of HELLS in maintenance of genome stability is likely to contribute to its role in cancer biology and demonstrates that different chromatin remodelling activities are required for efficient repair in specific genomic contexts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.