We report on the creation of an array of spin-squeezed ensembles of cesium atoms via Rydberg dressing, a technique that offers optical control over local interactions between neutral atoms. We optimize the coherence of the interactions by a stroboscopic dressing sequence that suppresses super-Poissonian loss. We thereby prepare squeezed states of N = 200 atoms with a metrological squeezing parameter ξ 2 = 0.77(9) quantifying the reduction in phase variance below the standard quantum limit. We realize metrological gain across three spatially separated ensembles in parallel, with the strength of squeezing controlled by the local intensity of the dressing light. Our method can be applied to enhance the precision of tests of fundamental physics based on arrays of atomic clocks and to enable quantum-enhanced imaging of electromagnetic fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.