Many studies have tried to assess the role of both deterministic and stochastic processes in community assembly, yet a lack of consensus exists on which processes are more prevalent and at which spatial scales they operate. To shed light on this issue, we tested two nonmutually exclusive, scale‐dependent hypotheses: (1) that competitive exclusion dominates at small spatial scales; and (2) that environmental filtering does so at larger ones. To accomplish this, we studied the functional patterns of tropical montane forest communities along two altitudinal gradients, in Ecuador and Peru, using floristic and functional data from 60 plots of 0.1 ha. We found no evidence of either functional overdispersion or clustering at small spatial scales, but we did find functional clustering at larger ones. The observed pattern of clustering, consistent with an environmental filtering process, was more evident when maximizing the environmental differences among any pair of plots. To strengthen the link between the observed community functional pattern and the underlying process of environmental filtering, we explored differences in the climatic preferences of the most abundant species found at lower and higher elevations and examined whether their abundances shifted along the elevation gradient. We found (1) that greater community functional differences (observed between lower and upper tropical montane forest assemblies) were mostly the result of strong climatic preferences, maintained across the Neotropics; and (2) that the abundances of such species shifted along the elevational gradient. Our findings support the conclusion that, at large spatial scales, environmental filtering is the overriding mechanism for community assembly, because the pattern of functional clustering was linked to species’ similarities in their climatic preferences, which ultimately resulted in shifts in species abundances along the gradient. However, there was no evidence of competitive exclusion at more homogeneous, smaller spatial scales, where plant species effectively compete for resources.
Herbivory is ubiquitous. Despite being a potential driver of plant distribution and performance, herbivory remains largely undocumented. Some early attempts have been made to review, globally, how much leaf area is removed through insect feeding. Kozlov et al., in one of the most comprehensive reviews regarding global patterns of herbivory, have compiled published studies regarding foliar removal and sampled data on global herbivory levels using a standardized protocol. However, in the review by Kozlov et al., only 15 sampling sites, comprising 33 plant species, were evaluated in tropical areas around the globe. In Brazil, which ranks first in terms of plant biodiversity, with a total of 46,097 species, almost half (43%) being endemic, a single data point was sampled, covering only two plant species. In an attempt to increase knowledge regarding herbivory in tropical plant species and to provide the raw data needed to test general hypotheses related to plant-herbivore interactions across large spatial scales, we proposed a joint, collaborative network to evaluate tropical herbivory. This network allowed us to update and expand the data on insect herbivory in tropical and temperate plant species. Our data set, collected with a standardized protocol, covers 45 sampling sites from nine countries and includes leaf herbivory measurements of 57,239 leaves from 209 species of vascular plants belonging to 65 families from tropical and temperate regions. They expand previous data sets by including a total of 32 sampling sites from tropical areas around the globe, comprising 152 species, 146 of them being sampled in Brazil. For temperate areas, it includes 13 sampling sites, comprising 59 species. Thus, when compared to the most recent comprehensive review of insect herbivory (Kozlov et al.), our data set has increased the base of available data for the tropical plants more than 460% (from 33 to 152 species) and the Brazilian sampling was increased 7,300% (from 2 to 146 species). Data on precise levels of herbivory are presented for more than 57,000 leaves worldwide. There are no copyright restrictions. Please cite this paper when using the current data in publications; the authors request to be informed how the data is used in the publications.
As áreas verdes urbanas são fundamentais para a manutenção do microclima, redução da poluição sonora, melhoria da qualidade de vida da população e como refúgio aos animais. O conhecimento das espécies que compõem esse sistema mostra-se de grande importância para o manejo e conservação dessa vegetação. A Universidade Federal da Bahia, inserida num grande centro urbano, é composta por áreas arborizadas, incluindo fragmentos de mata nativa. Os principais objetivos deste estudo são realizar o levantamento das espécies arbóreas dos espaços livres da UFBA e contribuir para o conhecimento da flora das áreas verdes localizadas em centros urbanos. Foram coletados espécimes arbóreos com DAP e” 10 cm, durante o período de agosto de 2005 a junho de 2006, presentes nas praças, jardins de edifícios e vias (ruas e avenidas). Os espécimes foram identificados e inseridos no Herbário ALCB. Foram encontradas 131 espécies, pertencentes a 100 gêneros, distribuídas em 31 famílias de angiospermas e duas famílias de gimnospermas. As famílias mais representativas em número de espécies foram as Leguminosae (30%), Arecaceae (14%), Moraceae (7%), Bignoniaceae (5%) e Malvaceae (5%). Entre as espécies, 65 (49,6%) são exóticas, indicando que a arborização da UFBA seguiu o padrão observado na maioria das áreas verdes públicas das cidades brasileiras. Intervenções na arborização devem priorizar o uso da flora nativa e atentar para a densidade e distribuição das espécies, evitando assim possíveis comprometimentos dos atributos paisagísticos e da dinâmica ecológica da vegetação e das comunidades associadas.
A vast literature indicates that environment plays a paramount role in determining floristic composition in tropical forests. However, it remains unclear which are the most important environmental factors and their relative effect across different spatial scales, plant life forms or forest types. This study reviews the state of knowledge on the effect of soil and climate on floristic composition in tropical forests. From 137 publications, we collated information regarding: (1) spatial scale, continent, country, life form, and forest type; (2) proportion of variance in floristic composition explained by soil and climatic variables and how it varies across spatial scales; and (3) which soil and climate variables had a significant relationship on community composition for each life form and forest type. Most studies were conducted at landscape spatial scales (67%) and mainly in South America (74%), particularly in Brazil (40%). Studies majorly focused on trees (82%) and on lowland evergreen tropical forests (74%). Both soil and climate variables explained in average the same amount (14% each) of the variation observed in plant species composition, although soils appear to exert a stronger influence at smaller spatial scales while climate effect increases toward larger ones. Temperature, precipitation, seasonality, soil moisture, soil texture, aluminum, and base cations—calcium and magnesium–and their related variables (e.g., cation exchange capacity, or base saturation) were frequently reported as important variables in structuring plant communities. Yet there was variability when comparing different life forms or forest types, which renders clues about certain ecological peculiarities. We recommend the use of standardized protocols for collecting environmental and floristic information in as much as possible, and to fill knowledge gaps in certain geographic regions. These actions will be especially beneficial to share uniform data between researchers, conduct analysis at large spatial scales and get a better understanding of the link between soils and climate gradients and plant strategies, which is key to propose better conservation policies under the light of global change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.