Complete and accurate DNA replication is essential to genome stability maintenance during cellular division. However, cells are routinely challenged by endogenous as well as exogenous agents that threaten DNA stability. DNA breaks and the activation of the DNA damage response (DDR) arising from endogenous replication stress have been observed at pre-or early stages of oncogenesis and senescence. Proper detection and signalling of DNA damage are essential for the autonomous cellular response in which the DDR regulates cell cycle progression and controls the repair machinery. In addition to this autonomous cellular response, replicative stress changes the cellular microenvironment, activating the innate immune response that enables the organism to protect itself against the proliferation of damaged cells. Thereby, the recent descriptions of the mechanisms of the pro-inflammatory response activation after replication stress, DNA damage and DDR defects constitute important conceptual novelties. Here, we review the links of replication, DNA damage and DDR defects to innate immunity activation by pro-inflammatory paracrine effects, highlighting the implications for human syndromes and immunotherapies.Genes 2020, 11, 409 2 of 26 formed when nascent transcripts re-anneal to their template DNA, displacing the non-template strand as single-stranded DNA (ssDNA) [12]. Elevated R-loop levels cause DNA damage and genome instability. The loss of RNA processing and regulatory factors increases R-loop levels, causing R-loop dependent DNA damage in eukaryotic cells [13][14][15][16].DNA breaks and activation of the DNA damage response (DDR), arising from endogenous replication stress, have been observed at early or precancerous stages, and adaptation to replication stress plays an important role in tumour development [17][18][19][20]. The DDR protects genome stability through the precise coordination of a network of pathways, ensuring faithful transmission of genetic material, including DNA replication, repair and recombination, cell cycle checkpoint and chromosome segregation. Ultimately, these autonomous cell responses induce senescence or cell death [21][22][23][24][25]. All these processes prevent the proliferation of cells bearing DNA damage and/or genetic rearrangements. In agreement, syndromes caused by mutations in DDR and/or DNA repair factors are often associated with high genetic instability, cancer predisposition and premature ageing [24,[26][27][28]. In addition to these cell-autonomous responses, protective process(es) also act at the organism level. Such mechanism(s) involve the modification of the cellular microenvironment and ultimately the activation of innate immunity.The inflammatory response is a universal cell-intrinsic response to infections or tissue damage. Inflammation, which is triggered when innate immune cells detect infection, for example, eliminates the initial cause of cell injury, clears out necrotic cells and tissues damaged from the original insult and from the inflammatory process, and initiates ...
Myc protooncogenes play important roles in the regulation of cell proliferation, growth, differentiation and survival during development. In various developing organs, c-myc has been shown to control the expression of cell cycle regulators and its misregulated expression is detected in many human tumors. Here, we show that c-myc gene (Myc) is highly expressed in developing mouse lens. Targeted deletion of c-myc gene from head surface ectoderm dramatically impaired ocular organogenesis, resulting in severe microphtalmia, defective anterior segment development, formation of a lens stalk and/or aphakia. In particular, lenses lacking c-myc presented thinner epithelial cell layer and growth impairment that was detectable soon after its inactivation. Defective development of c-myc-null lens was not caused by increased cell death of lens progenitor cells. Instead, c-myc loss reduced cell proliferation, what was associated with an ectopic expression of Prox1 and p27Kip1 proteins within epithelial cells. Interestingly, a sharp decrease in the expression of the forkhead box transcription factor Foxe3 was also observed following c-myc inactivation. These data represent the first description of the physiological roles played by a Myc family member in mouse lens development. Our findings support the conclusion that c-myc regulates the proliferation of lens epithelial cells in vivo and may, directly or indirectly, modulate the expression of classical cell cycle regulators in developing mouse lens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.