Chagas' disease, a neglected tropical illness for which current therapy is unsatisfactory, is caused by the intracellular parasite Trypanosoma cruzi. The goal of this work is to investigate the in vitro and in vivo effects of the arylimidamide (AIA) DB766 against T. cruzi. This arylimidamide exhibits strong trypanocidal activity and excellent selectivity for bloodstream trypomastigotes and intracellular amastigotes (Y strain), giving IC 50 s (drug concentrations that reduce 50% of the number of the treated parasites) of 60 and 25 nM, respectively. DB766 also exerts striking effects upon different parasite stocks, including those naturally resistant to benznidazole, and displays higher activity in vitro than the reference drugs. By fluorescent and transmission electron microscopy analyses, we found that this AIA localizes in DNA-enriched compartments and induces considerable damage to the mitochondria. DB766 effectively reduces the parasite load in the blood and cardiac tissue and presents efficacy similar to that of benznidazole in mouse models of T. cruzi infection employing the Y and Colombian strains, using oral and intraperitoneal doses of up to 100 mg/kg/day that were given after the establishment of parasite infection. This AIA ameliorates electrocardiographic alterations, reduces hepatic and heart lesions induced by the infection, and provides 90 to 100% protection against mortality, which is similar to that provided by benznidazole. Our data clearly show the trypanocidal efficacy of DB766, suggesting that this AIA may represent a new lead compound candidate to Chagas' disease treatment.
Chagas disease is caused by infection with the intracellular protozoan parasite Trypanosoma cruzi. At present, nifurtimox and benznidazole, both compounds developed empirically over four decades ago, represent the chemotherapeutic arsenal for treating this highly neglected disease. However, both drugs present variable efficacy depending on the geographical area and the occurrence of natural resistance, and are poorly effective against the later chronic stage. As a part of a search for new therapeutic opportunities to treat chagasic patients, pre-clinical studies were performed to characterize the activity of a novel arylimidamide (AIA - DB1831 (hydrochloride salt) and DB1965 (mesylate salt)) against T.cruzi. These AIAs displayed a high trypanocidal effect in vitro against both relevant forms in mammalian hosts, exhibiting a high selectivity index and a very high efficacy (IC50 value/48 h of 5–40 nM) against intracellular parasites. DB1965 shows high activity in vivo in acute experimental models (mouse) of T.cruzi, showing a similar effect to benznidazole (Bz) when compared under a scheme of 10 daily consecutive doses with 12.5 mg/kg. Although no parasitological cure was observed after treating with 20 daily consecutive doses, a combined dosage of DB1965 (5 mg/kg) with Bz (50 mg/kg) resulted in parasitaemia clearance and 100% animal survival. In summary, our present data confirmed that aryimidamides represent promising new chemical entities against T.cruzi in therapeutic schemes using the AIA alone or in combination with other drugs, like benznidazole.
Chagas' disease induced by Trypanosoma cruzi infection is an important cause of mortality and morbidity affecting the cardiovascular system for which presently available therapies are largely inadequate. We previously reported that transforming growth factor β (TGF-β) is implicated in several regulatory aspects of T. cruzi invasion and growth and in host tissue fibrosis. This prompted us to evaluate the therapeutic action of an inhibitor of TGF-β signaling (SB-431542) administered during the acute phase of experimental Chagas' disease. Male Swiss mice were infected intraperitoneally with 104 trypomastigotes of T. cruzi (Y strain) and evaluated clinically for the following 30 days. SB-431542 treatment significantly reduced mortality and decreased parasitemia. Electrocardiography showed that SB-431542 treatment was effective in protecting the cardiac conduction system. By 14 day postinfection, enzymatic biomarkers of tissue damage indicated that muscle injury was decreased by SB-431542 treatment, with significantly lower blood levels of aspartate aminotransferase and creatine kinase. In conclusion, inhibition of TGF-β signaling in vivo appears to potently decrease T. cruzi infection and to prevent heart damage in a preclinical mouse model. This suggests that this class of molecules may represent a new therapeutic agent for acute and chronic Chagas' disease that warrants further clinical exploration.
Aromatic diamidines are DNA minor groove-binding ligands that display excellent antimicrobial activity against fungi, bacteria, and protozoa. Due to the currently unsatisfactory chemotherapy for Chagas' disease and in view of our previous reports regarding the effect of diamidines and analogues against both in vitro and in vivo Trypanosoma cruzi infection, this study evaluated the effects of a diarylthiophene diamidine (DB1362) against both amastigotes and bloodstream trypomastigotes of T. cruzi, the etiological agent of Chagas' disease. The data show the potent in vitro activity of DB1362 against both parasite forms that are relevant for mammalian infection at doses which do not exhibit cytotoxicity. Ultrastructural analysis and flow cytometry studies show striking alterations in the nuclei and mitochondria of the bloodstream parasites. In vivo studies were performed at two different drug concentrations (25 and 50 mg/kg/day) using a 2-day or a 10-day regimen. The best results were obtained when acutely infected mice were treated with two doses at the lower concentration, resulting in 100% survival, compared to the infected and untreated mice. Although it did not display higher efficacy than benznidazole, DB1362 reduced both cardiac parasitism and inflammation, and in addition, it protected against the cardiac alterations (determined by measurements) common in T. cruzi infection. These results support further investigation of diamidines and related compounds as potential agents against Chagas' disease.
BackgroundChagas disease induced by Trypanosoma cruzi (T. cruzi) infection is a major cause of mortality and morbidity affecting the cardiovascular system for which presently available therapies are largely inadequate. Transforming Growth Factor beta (TGFß) has been involved in several regulatory steps of T. cruzi invasion and in host tissue fibrosis. GW788388 is a new TGFß type I and type II receptor kinase inhibitor that can be orally administered. In the present work, we studied its effects in vivo during the acute phase of experimental Chagas disease.Methodology/Principal FindingsMale Swiss mice were infected intraperitoneally with 104 trypomastigotes of T. cruzi (Y strain) and evaluated clinically. We found that this compound given once 3 days post infection (dpi) significantly decreased parasitemia, increased survival, improved cardiac electrical conduction as measured by PR interval in electrocardiography, and restored connexin43 expression. We could further show that cardiac fibrosis development, evaluated by collagen type I and fibronectin expression, could be inhibited by this compound. Interestingly, we further demonstrated that administration of GW788388 at the end of the acute phase (20 dpi) still significantly increased survival and decreased cardiac fibrosis (evaluated by Masson's trichrome staining and collagen type I expression), in a stage when parasite growth is no more central to this event.Conclusion/SignificanceThis work confirms that inhibition of TGFß signaling pathway can be considered as a potential alternative strategy for the treatment of the symptomatic cardiomyopathy found in the acute and chronic phases of Chagas disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.