This research demonstrates a model of a wind energy conversion system that operates at different wind speed, with results simulated in MATLAB SIMULINK. The wind turbine system is made up of three parts or subsystems namely the aerodynamic, mechanical and electrical blocks. The system is designed by modeling differential equations for each block and then simulated in SIMULINK environment. The Squirrel Case Induction Generator, horizontal axis wind turbine system with complexities of all three parts of the wind turbine model were analyzed using the mathematical equations, with each block modeled and designed separately, then all three blocks joined together to give the complete unit. Wind speed data from Ogoja community in southern part of Nigeria was used to test the simulation performance. The system simulation was tested and worked satisfactorily, with different wind speed giving proportionate mechanical torque and turbine speed. This model therefore demonstrates that wind energy could be extracted in the region even at varying wind speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.