Friction reducers (FRs) are essential additives for water used in hydraulic fracturing treatments for shale reservoirs. These polymers swell and unfurl in the frac water so that polymer chains align along the direction of flow to inhibit turbulence thereby reducing friction at high flow rates. Source water ion content, application pH, and compatibility with the formation are key drivers in deciding which FR chemistries are fit-for-purpose for the operation, balancing desired fluid performance with treatment economics. This investigation explores zeta potential measurement as a novel and meaningful analytical metric to correlate chemical and rheological properties of FRs in a range of source water qualities with their friction reducing performance. The approach of this investigation involves measuring zeta potential of frac fluids formulated using anionic or cationic FRs in waters with varying ionic activity over a range of FR concentrations and pH. The evaluation encompasses a variety of FRs spanning general purpose materials to more sophisticated additives designed to function in fluids with higher concentrations of salt. Dry FR materials as well as corresponding slurry or emulsion forms of the additives are tested. Monovalent and divalent salts and mixtures thereof are used in brine formulations. FR characterization is performed including rheological sweeps, viscoelasticity measurements, and flow loop tests. Results from this study support the conclusion that zeta potential measurement can be used during the FR screening process as a viable supplement to industry standard tests for assessing FR performance in brine.
In oil and gas well construction during the drillouts or wellbore cleaning process, one of the most critical functions of land and offshore completions fluids is the ability to suspend solids effectively under extreme downhole conditions. Conventional agents such as xanthan gum, HEC and numerous other polymers have historically been used to accomplish this function, albeit with limitations. Functionally, these commonly used polymers depend primarily upon viscosity rather than elastic characteristics to suspend solids and require intensive chemical processing that leads to high deployment cost. Recently microfibrillated cellulose (MFC) has been investigated as a prospective suspending agent in carrier fluids for extreme downhole conditions. MFC is a unique type of superfine cellulose fibrils obtained from fully sustainable sources that have been subjected to proprietary treatment procedures, resulting in fibril bundles consisting of lateral dimensions in the sub-micron scale and lengths up to micron scale with abundant terminal hydroxyl functional groups. When dispersed into aqueous solutions, the resulting fluid has been characterized to have several favorable rheological, chemical and mechanical properties. Rheological measurements show the viscoelasticity of MFC dispersions is dominated by their storage modulus (G′ > G″) even with fluids formulated with as low as 0.25 wt% (about 20 lbm MFC /1000 gallons). The result is a suspension that exhibits superior particle suspension properties compared on a mass basis to conventional materials such as guar, CMC, HEC and xanthan gum. In addition, MFC solutions exhibit comparatively high viscosities at low shear rates but thin by several orders of magnitude at high shear, a characteristic that implies less work on surface equipment while having the ability to suspend solids at very low pump rates. MFC dispersions also have an excellent brine tolerance, demonstrating stable suspensions over weeks in fluids containing up to 150,000 mg/L TDS. The dispersions are stable at downhole relevant temperatures, applicable at low and high pH levels and resistant to shear degradation. Finally, MFC originates from natural resources and is environmentally benign and biodegradable. This paper describes the comprehensive characterization of the rheological and suspension properties that distinguish MFC from other conventionally used materials and make it fit-for-purpose as a robust, environmentally benign and high-performance suspending agent for downhole applications.
Previously, it was shown that zeta potential could be used as a metric to determine friction reducer (FR) performance. Specifically, the extent of and how quickly the FR reaches peak friction reduction in source water. A correlation postulated from the previous work is zeta potentials relationship to an FR's stability during mechanical or chemical degradation. In other words, can zeta potential be used as a metric to determine the extent of polymer breaking and can this relationship be translated to regained conductivity? This paper describes a laboratory study of zeta potential measurements to track breaker reaction rates, stability of broken polymer dispersions, and the relationship between chemical degradation of FRs and regained conductivity. The approach of this investigation involves measuring zeta potential of frac fluids formulated using anionic and cationic FRs with varying types and concentrations of breakers at different temperatures and times. These metrics are then correlated with regain conductivity. A quantitative relationship exists between zeta potential, fluid rheology, and regain conductivity. Zeta potential evaluation of degraded FR's in frac fluids correlate to performance in regain conductivity testing. These measurements can expedite the selection of chemical breakers with respect to performance. Zeta potential measurements of degraded FR are indicative of broken FR dispersion stability which has impact on regain conductivity. Tracking behavior of cationic FR's using zeta potential reveals the materials can become anionic with time and temperature and become susceptible to agglomeration with iron. Zeta potential measurements can be used during a chemical breaker selection process as a viable supplement to industry standard tests for assessing the comparative effectiveness of chemical breakers in frac fluids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.